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ABOUT ME

Adam Grzywaczewski - adamg@nvidia.com

Deep Learning Solution Architect @

NVIDIA - Supporting delivery of Al / Deep Learning
solutions

10 years expereince deliverying Machine

Learning of all scale (from embedded, mobile
to Big Data)

My past experience:

Capgemini: https://goo.gl/MzgGbg

Jaguar Land Rover Research: https://goo.gl/ar7Lul
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NVIDIA AGX

EMBEDDED Al HPC

High-speed SerDes — 109 Gbps + 320 Gbps 1/0
Up to 320 TOPS Tensor Ops

Up to 25 TFLOPS FP32

Up to 16 GIGA Rays

Starting from 15W
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NVIDIA DRIVE: SOFTWARE-DEFINED CAR

Powerful and Efficient Al, CV, AR, HPC | Rich Software Development Platform
Functional Safety | Open Platform | 370+ partners developing on DRIVE

DRIVE AGX XAVIER
DRIVE AGX PEGASUS

DRIVE IX

DRIVE AR

DRIVE AV

DRIVE OS

7 <ANVIDIA.



CARS

NVIDIA DRIVE
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NVIDIA JETSON
SOFTWARE-DEFINED AUTONOMOUS MACHINES

Powerful and efficient Al, CV, HPC | Rich Software Development Platform
Open Platform | 200K Developers

ECOSYSTEM

ACCELERATED MODULES

JETPACK SDK

JETSON COMPUTER




BILLIONS OF AUTONOMOUS MACHINES

Taking advantage of the progress in self driving cars
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Industrial Aerospace/Defense Healthcare

Retail Logistics Inventory Mgmt Delivery Inspection Service
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NEURAL NETWORKS ARE NOT NEW

And are surprisingly simple as an algorithm

(i}
synapse

W, 1, dendrite

neuron




NEURAL NETWORKS ARE NOT NEW

Algorithm performance in small data regime

Accuracy

0 5 10 15 20 25
Dataset Size ML1
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Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F 1ka6a13S9I



NEURAL NETWORKS ARE NOT NEW

Algorithm performance in small data regime

Accuracy

0 5 10 15 20 25
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Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F 1ka6a13S9I



NEURAL NETWORKS ARE NOT NEW

Algorithm performance in small data regime

Accuracy

0 5 10 15 20 25

Dataset Size ——SmallNN ML1
ML2 ML3
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Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F 1ka6a13S9I



NEURAL NETWORKS ARE NOT NEW

Historically we never had large datasets or computers

The MNIST (1999) database Algorithm performance in small data regime
contains 60,000 training images
and 10,000 testing images.
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Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F 1ka6a13S9I



COMPUTE

Historically we never had large datasets or computg

”
107 _ ”
GPU-Computing perf ”
1.5X per year 1000X

106 By 2025
105 Transistors

(thousands) 1.1X per year
104
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Single-threaded perf
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CONTEXT

2 petaFLOPs - today

—eTwo GPU Boards

8 V100 32GB GPUs per board
6 NVSwitches per board
512GB Total HBM2 Memory
>~ interconnected by

— Plane Card

NVIDIA Tesla V100 32GB )

Twelve NVSwitches
2.4 TB/sec bi-section
bandwidth

@) Eight EDR Infiniband/100 GigE
1600 Gb/sec Total
Bi-directional Bandwidth

46 PCle Switch Complex

GTwo Intel Xeon Platinum CPUs
30 TB NVME SSDs ¢}

Internal Storage € 1.5 TB System Memory

Dual 10/25 Gb/sec
Ethernet
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NEURAL NETWORKS ARE NOT NEW

But that changed and transformed the way we do machine learning

Algorithm performance in big data regime
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Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F 1ka6a13S9I



NEURAL NETWORKS ARE NOT NEW

Data and model size the key to accuracy

Algorithm performance in big data regime
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NEURAL NETWORK COMPLEXITY IS EXPLODING

7 ExaFLOPS 20 ExaFLOPS 100 ExaFLOPS
60 Million Parameters 300 Million Parameters 8700 Million Parameters
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2015 - Microsoft ResNet 2016 - Baidu Deep Speech 2 2017 - Google Neural Machine Translation
Superhuman Image Recognition Superhuman Voice Recognition Near Human Language Translation



100 EXAFLOPS
2 YEARS ON A DUAL CPU SERVER




NEURAL NETWORKS ARE NOT NEW

Exceeding human level performance

Algorithm performance in large data regime

Accuracy

0 500 1000 1500 2000 2500

Dataset Size
——SmallNN ——ML1 ML2 ML3 == Big NN = Bigger NN

DEEP
& LEARNING
NVIDIA.  INSTITUTE

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F 1ka6a13S9I



EXPLODING DATASETS

Logarithmic relationship between the dataset size and accuracy

55 <—=_ After Training on 10B words
&0 @@ After Training on 100B words
30 50+
R 80 L ) 1 //*/J
1 / - ’/.’/r;f//: Initialization | mlOU  _ « 45
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E 8% 300M 753 g S 40/
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Figure 6. Semantic segmentation performance on Pascal VOC

2012 val set. (left) Quantitative performance of different initial-

izations; (right) Impact of data size on performance. 107 108 10° 10 10"
Model Parameters Excluding Embedding and Softmax

-

Figure 4. Object detection performance when initial checkpoints
are pre-trained on different subsets of JFT-300M from scratch.
x-axis is the data size in log-scale, y-axis is the detection per-
formance in mAP@[.5,.95] on COCO minival* (left), and in
mAP@.5 on PASCAL VOC 2007 test (right).

—o—@

Sun, Chen, et al. "Revisiting Unreasonable Effectiveness of Data in Deep Learning Era." arXiv preprint arXiv:1707.02968 (2017). e
Shazeer, Noam, et al. "Outrageously large neural networks: The sparsely-gated mixture-of-experts layer." arXiv preprint arXiv:1701.06538 (2017). > T
Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).



EXPLODING DATASETS

Logarithmic relationship between the dataset size and accuracy
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Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.




EXPLODING DATASETS

Logarithmic relationship between the dataset size and accuracy

Small Data
Region

Best Guess Error

Power-law Region

Irreducible
Error
Region

ST

Generalization Error (Log-scale)

Irreducible Error

Training Data Set 5ize (Log-scale)

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.
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Making complex problems easy
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Making unsolvable problems
expensive
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PERCEPTION
ALGORITHMS



BUILDING Al FOR SDC IS HARD

Vehicles Pedestrians Hazards

Twilight Backlit

Perception Free Space Perception Distance Perception Weather LIDAR Perception

S ; :

Camera-based Mapping Camera Localization to HD Map LIDAR Localization to HD Map Path Perception Scene Perception



WHAT TESTING SCALE ARE WE TALKING ABOUT?

We’re on our way to 100s PB of real test data = millions of real miles
+ 1,000s DRIVE Constellation nodes for offline testing alone
& billions of simulated miles

4,000,000

3,000,000

24h test

— Target robustness per model
on 3,200 Nodes*

(miles)

-- Test dataset size required
(miles)

— NVIDIA’s ongoing data collection
(m]leS) 1,000,000

2,000,000

Miles

24h test
on 1,600 Nodes*

Real-time test runs in 24h
I\VIDIA.
on 400 Nodes*



SDC SCALE TODAY AT NVIDIA

12-camera+Radar+Lidar 1 500 labeler 4,000 GPUs in cluster
RIG mounted on 30 cars ’ aDELErs = 500 PFLOPs

100 DRIVE

1PB collected/week 20M objects labeled/mo Pegasus in cluster
(Constellations)

1PB of in-rack object
cache per 72 GPUs,
30PB provisioned

15PB active training+test 20 unique models
dataset 50 labeling tasks

<ANVIDIA



TRAINING



For any size of the data it’s a
good idea to always make the
data look small by using a huge
model.



EXPLODING MODEL COMPLEXITY

Good news - model size scales sublinearly

Model Size Scales Sublinearly

Best Model Size

Amount of Data

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409." "
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accuracy (precision @1)

65

80 -

75 1

70 -

EVIDENCE FROM IMAGE PROCESSING

Good news - model size scales sublinearly

NASNet-A (6 @ 4032)
& J— )
NASNGLA (7 @ 1820). —""" 0 m
m ; ' il — O Ppne1gy et
NASNet-A (5 @ 153g)- & Inception-ResNet-v2 PolyNet = ResNext-101
= Inception-vd
. .-"' Xeeption ResNet-152
;-‘;: V3
..";fncepnbn-vz
iNASNet-A (4 @ 1056)
VGG-16
@ MobileNet
@ Inception-v1
0 10000 20000 30000 40000

# Mult-Add operations (millions)

accuracy (precision @1)

85 -
NASNet-A (6 @ 4032)
R ]
DPN-131 o et
NASNet-A : ®1020) iy .6 s St
80 {nasnetA (s @1533;”&110" - ResNeXt-101
w 9 Xcepson
;e
£ Inceptionv3 ResNet-152
75 1 . Inception-v2
® dasera (s @ 106)
VGG-16
" ShutfieNet 2
MobileNet
701'e Inception-v1
65 T - - - - - T
20 40 60 80 100 120 140

# parameters (millions)

Zoph, Barret, et al. "Learning transferable architectures for scalable image recognition." arXiv preprint arXiv:1707.07012 (2017).
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IMPLICATIONS

Experimental Nature of Deep Learning - Unacceptable training time

e
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IMPLICATIONS

Automotive example

Majority of useful problems are too complex for a single GPU training

VERY CONSERVATIVE CONSERVATIVE

Fleet size (data capture per hour) 100 cars / 1TB/hour 125 cars / 1.5TB/hour
Duration of data collection 260 days * 8 hours 325 days * 10 hours
Data Compression factor 0.0005 0.0008
Total training set 104TB 0T L. 487.5TB

: —— | 18 TIMES __mumnn
InceptionV3 training time 01 vears NEECAT WSS n
(with 1 Pascal GPU) | Y oY ‘
AlexNet training time = i prem
(with 1 Pascal GPU) wd -1 YOS R o0 J.4years ?

IIIIIIIIIIIIIII



Xked.com

CONCLUSIONS

What does your team do in the mean time

THE #7 PROGRA
FOR LEGITINATELY SCACKING SFE:

MY CODE g COoMPILING™

HEY! GET BACK
TO UGRK!
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Xked.com

CONCLUSIONS

What does your team do in the meantime?

THE #7 PROGRA =
FOR LEGI TINATEL%LA&IE;V)&C((;FSFE:

4

MY BNN IS TRAINING”

HEY! GET BACK

TO WORK!

IIIIIIIIIIIIIII



CONCLUSIONS

Need to scale the training process for a single job

VERY . .
CONSERVATIVE  CONSERVATIVE Trlflmng
rom
Total training set 104 TB 487.5 TB Months or Years
InceptionV3 (one 166 days 778 days
e DGX-1V) (5+ months) (2+ years)
1 NVIDIA DGX-1 |
AlexNet 21 days 98 days
(one DGX-1V) (3 weeks) (3 months)
r InceptionV3 (10 16 days 77 days To
DGX-1V’s) (2+ weeks) (11 weeks) Weeks or Days
P AlexNet
P (10 DGX-1V’s) 2.1 days 9.8 days e
1

O NVIDIA DGX-1’s

IIIIIIIIIIIIIII



BALANCED HARDWARE

DGX-1 as a reference point for solution design

1. NETWORK INTERCONNECT
&X InfiniBand 100 Gbps EDR
2 10 GbE

2.GPUs

8% NVIDIA Tesla®V100 16 GB/GPU
40,950 Total NVIDIA CUDA® Cores
5,120 Tensor Cores

3. GPU INTERCONNECT
NVIDIA NVLink™
Hybrid Cube Mash

4. SYSTEM MEMORY
512 GB DDR4 LRDIMM

5.CPUs
2% 20-Core Intel® Xeon®
E5-2698 vi 2.2 GHz

6. STREAMING CACHE
AX192TBSSDsRAIDO

7. POWER
£X 1600W PSUs

(3500 W TDF)

8. COOLING
Efficient Front-to-Back
Airflow

<3

NVIDIA.

White Paper

NVIDIA DGX-1 With Tesla
V100 System Architecture

The Fastest Platform for Deep Learning

! 1
E—@i{]ﬁm il I

PLIE SWITTes PLIe SWICNEs

ires DGx-1 uses an 8-GPU hybrid cube-mesh interconnection network topology.
corners of the mesh-connected foces of the cube are connected to the PCle tree network, which
connects to the CPUs and NICs.

HVIDIA DEX-1 With Tests V100 System Architecture WE-BAYT-C0_1O1 | 5

DGX-1 SOFTWARE

je DGX-1 software has been built to run deep learning at scale. A key goal is to enable practitioners to
eploy deep learning frameworks and applications on DGX-1 with minimal setup effort. The design of
le platform software is centered around & minimsl OS and driver install on the server, and provisioning
all application and SDK software in Docker (see Section 4.2) containers through the DGX Container
egistry®, maintained by NVIDIA. Containers available for DGX-1 include multiple optimized deep
arning frameworks, the NVIDIA DIGITS deep learning training application, third-party accelerated
Mutians, and the NVIDIA CUDA Toolkit. Figure 9 shows the DGX-1 deep learning software stack.

FYTHRCH

ViDlA GPUs

Figure 8 The DEX-1 Deep Learning Software Stack.

5. NVIDIA's Docker container registry . See httpy//docs nuidia, i

BT With aechitecture WP-D841T-002 V01 | 18
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DGX POD

Reference architectures

3. DGX POD Rack Design

The DX POD is an optimized data center rack containing up to nin @

networking to support single and multi-node Al model training anc

P et e nVIDIA. - Hiding the complexity of

: 2; il':ifiﬁi?’:’f,‘!i‘;i:? .,”; — h a rd ware
| — Eeal it Hiding complexity of devops
= :m - Hiding the complexity of software
: : toolkit management
= : - Partner reference architectures
g Er with every major storage provider

Additional cc
as required.

Figure 5. Elevation of DGX POD utility rack (with support

Figure 4_Elevation of DGX POD rack € 2012 NVIDIA Corperation.
© 2012 N1 Corporation I
DEEP
© 32012 NVIDLA Carporatian. s
" ! <A DERRuine
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TRAINING

LOPS (FP32)
aFLOPS (FP64)

40

i

15

= igaFLOPS per watt




SUMMIT
27360 Tesla V100

80000
140000 { Y¥¥ Tiramisu, V100-FP16, lag 1 1600 v¥y Deeplabv3+, VI00-FP16, lag 1
:ram!qu Elgg_ig;&;‘ |Iag (1] "'," 70000 A Deeplabv3+, V100-FP186, lag O L 1000
120000 { ™ [llramisu, VIBO-FRSZ fag < 500 w®m Deeplabv3+, VI00-FP32, lag 1
Tiramisu, V100-FP32, lag 0 . 80000 - DeeplLabv3+ V100-FP32, lag 0
Tiramisu, P100-FP32, lag 0 7 L 800
100000 1 | 400
o o 50000 -
> n T L2
& 800001 o 240000 600 i~
@ 3004 © L
= l =
.= 60000 — ]
30000 400
- 200
40000 1 20000 -
i - 200
20000 100 10000 -
0- - . T . . . 0 0- - . d . - 0
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
#GPUs #GPUs
(a) Tiramisu (b) DeepLabv3+

Kurth, T., Treichler, S., Romero, J., Mudigonda, M., Luehr, N., Phillips, E., ... & Houston, M. (2018, November). Exascale deep learning for climate . S
analytics. In Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis (p. 51). IEEE Press.



10000

1000

100

10

=

1740

ITERATION TIME

Short iteration time is fundamental for success

ResNet 50 Training Time in minutes

264
60 48 40
24
15
I I 3.7

Microsoft
(Dec 2015)

Prefered
Netoworks
(Feb 17)

Facebook IBM (Aug17) SURFsara

(Jun 17)

(Sep 17)

UCB (Oct 17)

Preferred
Netoworks
(Nov 17)

Sony (Nov
18)
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VALIDATION



SAFE AV REQUIRES
A COMPREHENSIVE
VALIDATION
APPROACH

Large Scale | Millions of Miles
Diverse Vehicle and World Conditions
Data Driven | Scenario based
Repeatable and Reproducible
End-to-End System Level Test




THE AV VALIDATION GAP

COMPONENT LEVEL SIL ON ROAD TESTING
Low Fidelity | Scalable High Fidelity| Doesn’t Scale

No Coverage for Extreme & Dangerous Scenarios



NVIDIA DRIVE VALIDATION METHODOLOGY

Three Pronged Approach

Large Scale System Level
HIL

FIDELITY

Component Level
SIL

MILES



HARDWARE IN THE LOOP SIMULATION

Bit Accurate & Timing Accurate

PERCEPTION
Camera | Radar | Lidar | IMU

()

CONTROL
Steering | Throttle | Brake



DRIVE CONSTELLATION ARCHITECTURE
D bl =2 @

Environment Traffic Vehicle Sensor Scenario
Model Model Model Model Model

DRIVE Sim API

DRIVE AV

IX

DRIVE CORE | DRIVE NETWORKS
DRIVE OS

DRIVE Sim

DRIVE Constellation OS

DRIVE Constellation Simulator




ENVIRONMENT MODEL

Highly Detailed Environments




ENVIRONMENT MODEL

Change Time of Day




ENVIRONMENT MODEL

Add Traffic Scenarios




ENVIRONMENT MODEL

Change Weather




DRIVE CONSTELLATION
FOR 3R PARTY AV T T
VALIDATION (O IS o [ |

Open | Accessible | Available at Scale

Open Platform | Wide Ecosystem Support
Cloud Based Solution | Scalable

Accessible to OEMs and Researchers
Demonstrate Best Practice for AV Validation




THE DRIVE SIM ECOSYSTEM

carsim
OpenDRIVE @ @ AVL 5% dSPACE

TOMTOM®  ZENRIN

IS coroayNe i <P cognata <P cognata

G/ INNOVIZ SONY o

sUMOo
SIEMENS Velodyne:




BEST PRACTICES FOR AV VALIDATION
Planning the Path to Safety

Insurance Insfitute for Highway Safety
NH I SA Highway Loss Data Institute

¢,P~FER
EURO@NCAP @

Partnerships with leading safety organizations

Public | Private | Worldwide
Creating best practices and standards
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