Developing Perception Algorithms for Self-Driving Cars

ADAM GRZYWACZEWSKI | NVIDIA

Original content by Clement Farabet

ABOUT ME

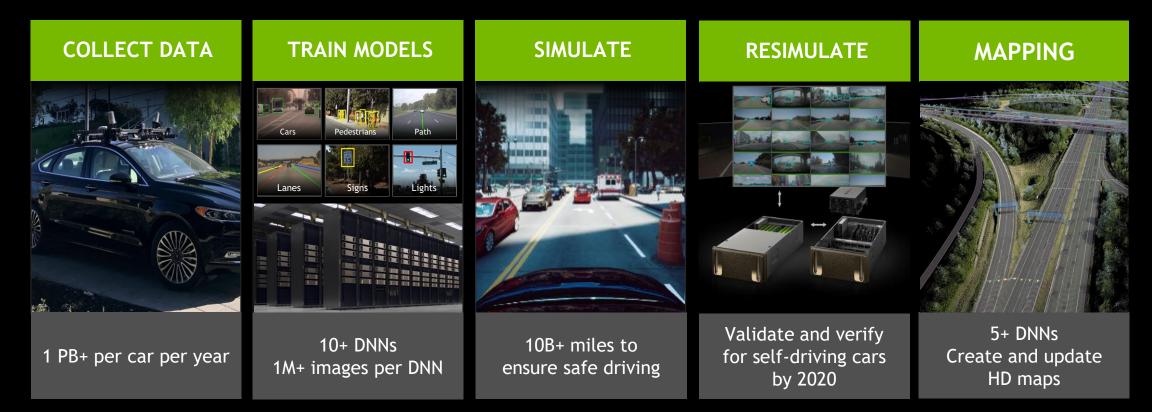
Adam Grzywaczewski - adamg@nvidia.com

- Deep Learning Solution Architect @ NVIDIA - Supporting delivery of AI / Deep Learning solutions
- 10 years experience deliverying Machine Learning of all scale (from embedded, mobile to Big Data)
- My past experience:
 - Capgemini: <u>https://goo.gl/MzgGbq</u>
 - Jaguar Land Rover Research: <u>https://goo.gl/ar7LuU</u>

NVIDIA AGX EMBEDDED AI HPC

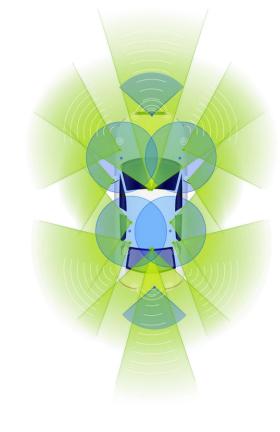
High-speed SerDes – 109 Gbps + 320 Gbps I/O Up to 320 TOPS Tensor Ops Up to 25 TFLOPS FP32 Up to 16 GIGA Rays Starting from 15W

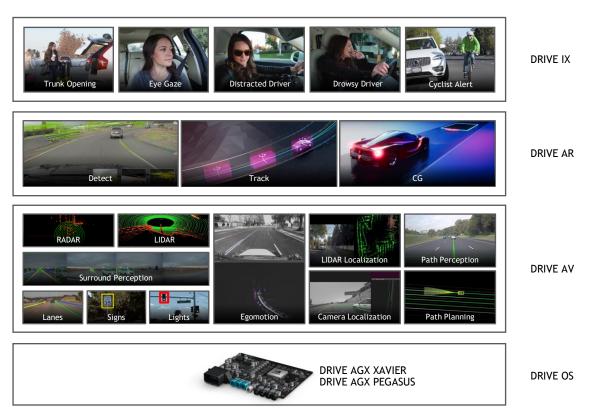
End to End System for AV



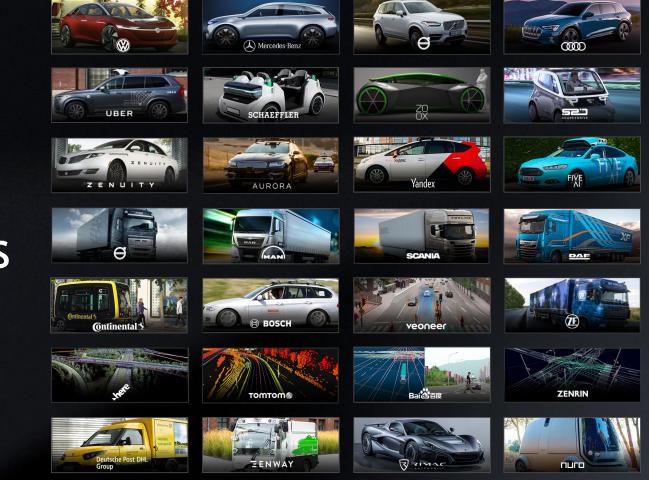
NVIDIA DRIVE: SOFTWARE-DEFINED CAR

Powerful and Efficient AI, CV, AR, HPC | Rich Software Development Platform Functional Safety | Open Platform | 370+ partners developing on DRIVE





NVIDIA DRIVE PLATFORM ADOPTION ACROSS TRANSPORTATION



CARS

MOBILITY SERVICES

TRUCKS

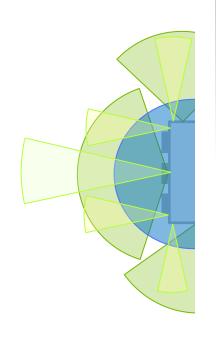
TIER ONES

MAPPING

SPECIALTY

NVIDIA JETSON SOFTWARE-DEFINED AUTONOMOUS MACHINES

Powerful and efficient AI, CV, HPC | Rich Software Development Platform Open Platform | 200K Developers



Sensors AI/Systems Software Design Services	ECOSYSTEM	
Depth est Path planning Obj detect Gesture rec Pose est Speech rec	ACCELERATED MODULES	
Artificial Intelligence Computer Vision Accelerated Computing Multimedia	JETPACK SDK	
JETSON COMPUTER		

BILLIONS OF AUTONOMOUS MACHINES

Taking advantage of the progress in self driving cars

Industrial

- Aerospace/Defense

Healthcare

Construction

Agriculture

Smart City

Retail

Logistics

Inventory Mgmt

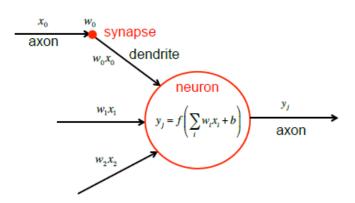
Delivery

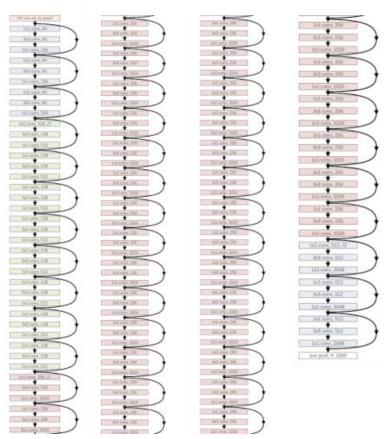
Inspection

Service

DEEP LEARNING

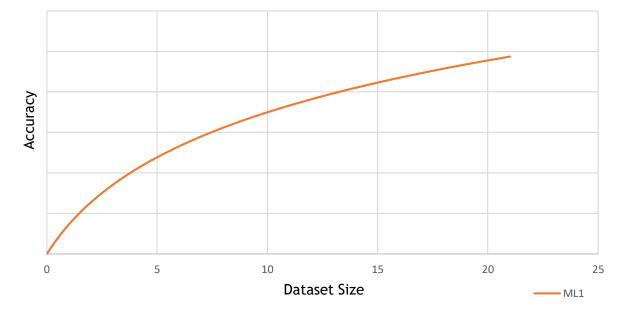
And are surprisingly simple as an algorithm





They just historically never worked well

Algorithm performance in small data regime



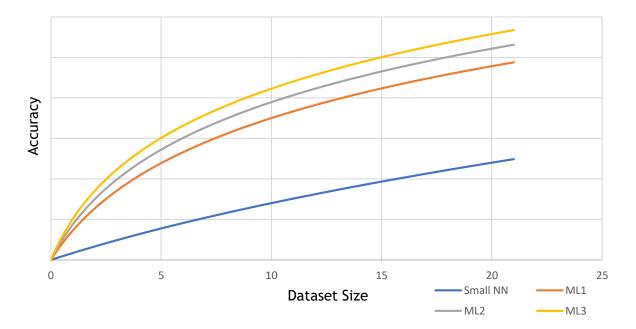
They just historically never worked well

Algorithm performance in small data regime

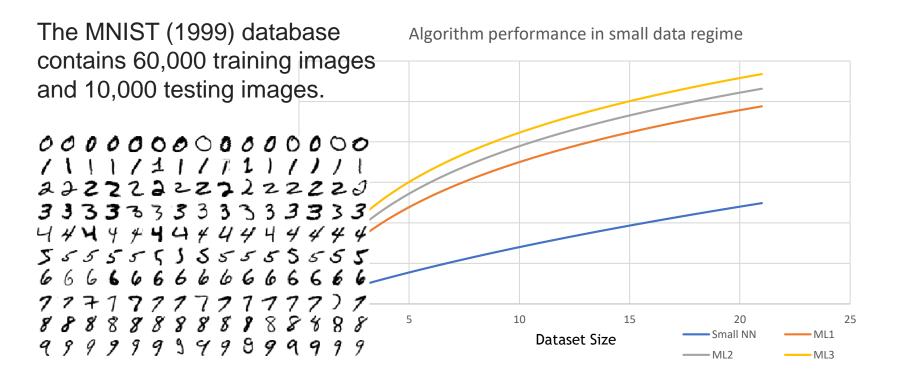


They just historically never worked well

Algorithm performance in small data regime

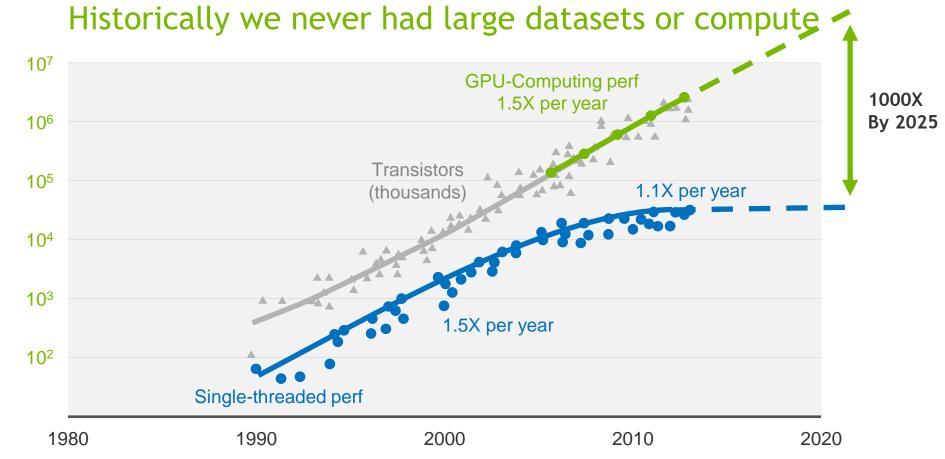


Historically we never had large datasets or computers

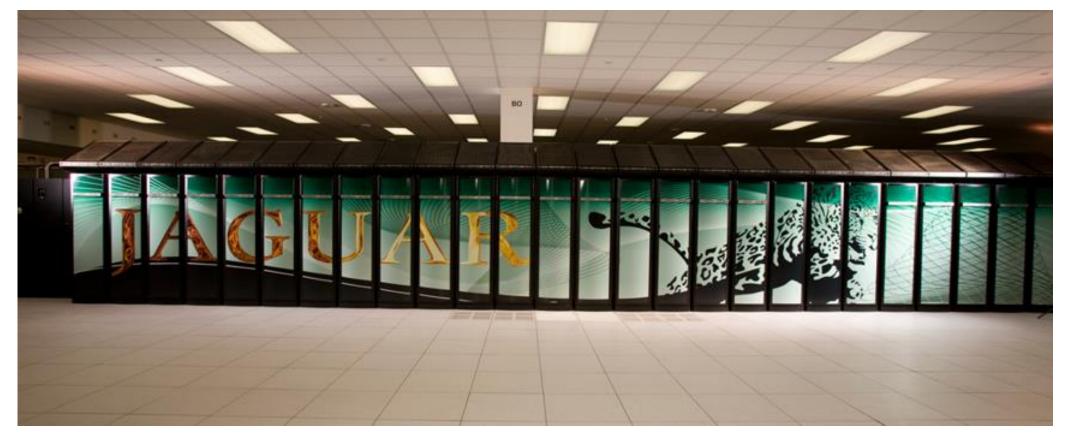


Andrew Ng, "Nuts and Bolts of Applying Deep Learning", https://www.youtube.com/watch?v=F1ka6a13S9I

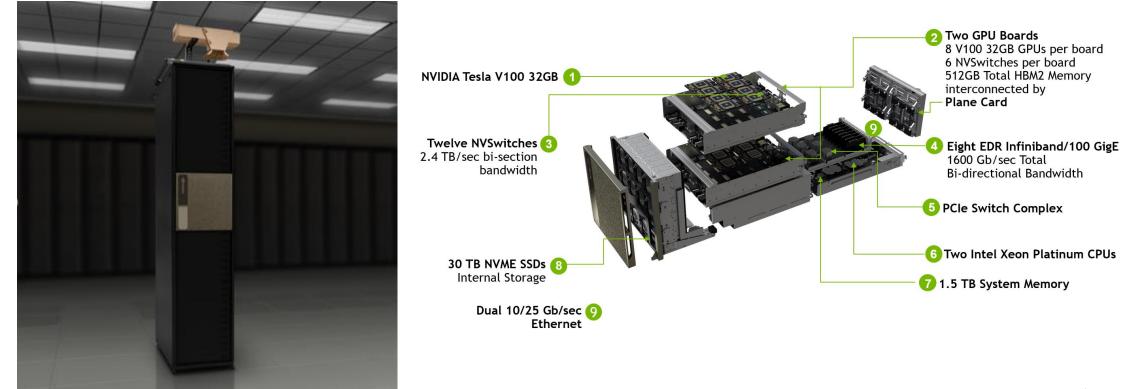
COMPUTE



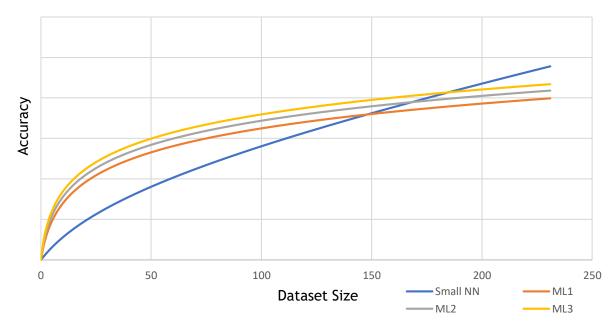
CONTEXT 1.759 petaFLOPs in November 2009



CONTEXT 2 petaFLOPs - today



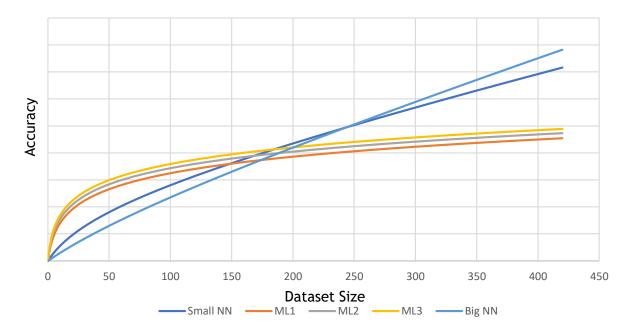
But that changed and transformed the way we do machine learning



Algorithm performance in big data regime

Data and model size the key to accuracy

Algorithm performance in big data regime



NEURAL NETWORK COMPLEXITY IS EXPLODING

To Tackle Increasingly Complex Challenges

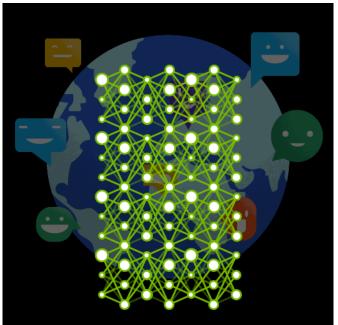
7 ExaFLOPS 60 Million Parameters

2015 - Microsoft ResNet Superhuman Image Recognition

20 ExaFLOPS 300 Million Parameters

2016 - Baidu Deep Speech 2 Superhuman Voice Recognition

100 ExaFLOPS 8700 Million Parameters

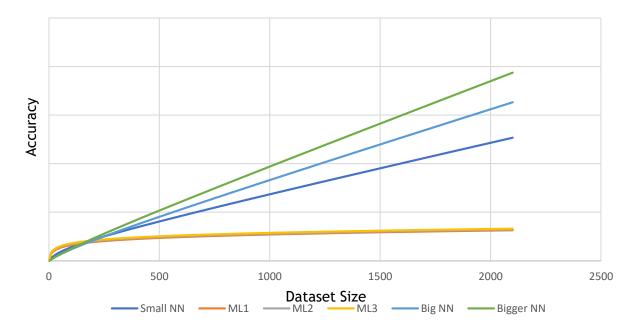


2017 - Google Neural Machine Translation Near Human Language Translation

100 EXAFLOPS = <u>2 YEARS ON A DUAL CPU SERVER</u>

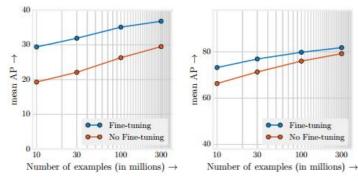
Exceeding human level performance

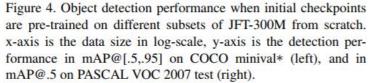
Algorithm performance in large data regime

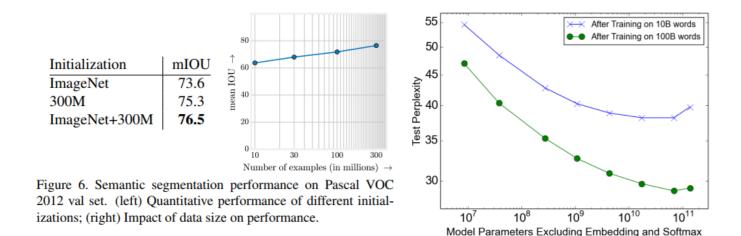


EXPLODING DATASETS

Logarithmic relationship between the dataset size and accuracy



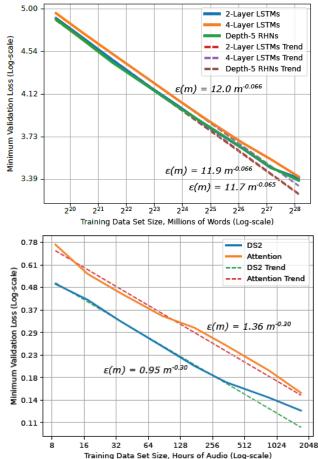




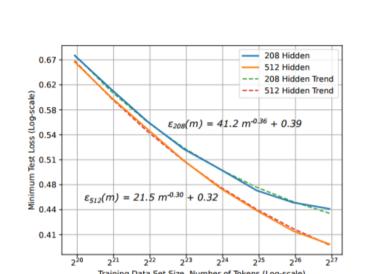
Sun, Chen, et al. "Revisiting Unreasonable Effectiveness of Data in Deep Learning Era." *arXiv preprint arXiv:1707.02968* (2017). Shazeer, Noam, et al. "Outrageously large neural networks: The sparsely-gated mixture-of-experts layer." arXiv preprint arXiv:1701.06538 (2017). Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

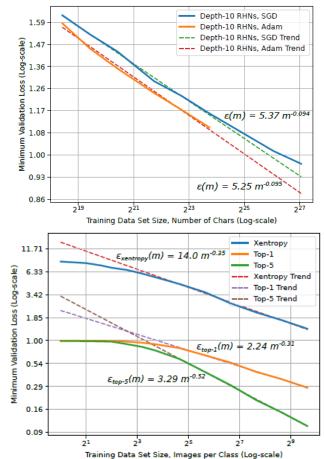
EXPLODING DATASETS

Logarithmic relationship between the dataset size and accuracy



- Translation
- Language Models
- Character Language Models
- Image Classification
- Attention Speech Models

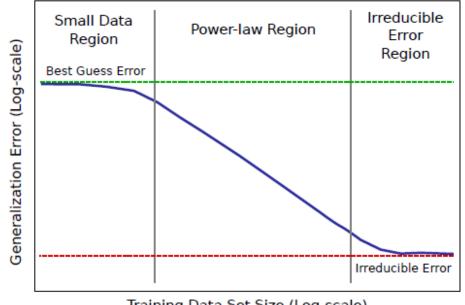




Training Data Set Size, Hours of Audio (Log-scale) Training Data Set Size, Number of Tokens (Log-scale) Training Data Set Size, Number of Tokens (Log-scale) Training Data Set Size, Images per Class (Log-scale) Training Data Set Size, Number of Tokens (Log-scale)

EXPLODING DATASETS

Logarithmic relationship between the dataset size and accuracy



Training Data Set Size (Log-scale)

LEARNING

Making complex problems easy

Making unsolvable problems expensive

PERCEPTION ALGORITHMS

BUILDING AI FOR SDC IS HARD

Every neural net in our DRIVE Software stack needs to handle 1000s of conditions and geolocations

Perception

Camera-based Mapping

Free Space Perception

Camera Localization to HD Map

Distance Perception

LIDAR Localization to HD Map

Weather

Path Perception

LIDAR Perception

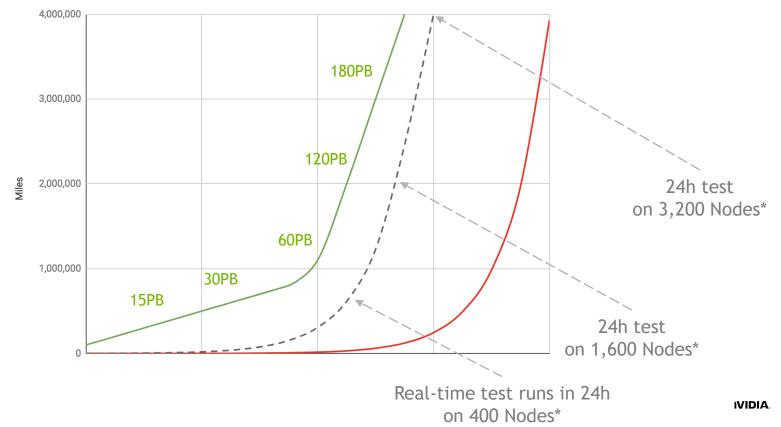
Scene Perception

WHAT TESTING SCALE ARE WE TALKING ABOUT?

We're on our way to 100s PB of <u>real</u> test data = <u>millions of real miles</u> + 1,000s DRIVE Constellation nodes for <u>offline testing alone</u> & <u>billions of simulated miles</u>

 Target robustness per model (miles)

- -- Test dataset size required (miles)
- NVIDIA's ongoing data collection (miles)



SDC SCALE TODAY AT NVIDIA

12-camera+Radar+Lidar RIG mounted on 30 cars	1,500 labelers	4,000 GPUs in cluster = 500 PFLOPs
1PB collected/week	20M objects labeled/mo	100 DRIVE Pegasus in cluster (Constellations)
15PB active training+test dataset	20 unique models 50 labeling tasks	1PB of in-rack object cache per 72 GPUs, 30PB provisioned

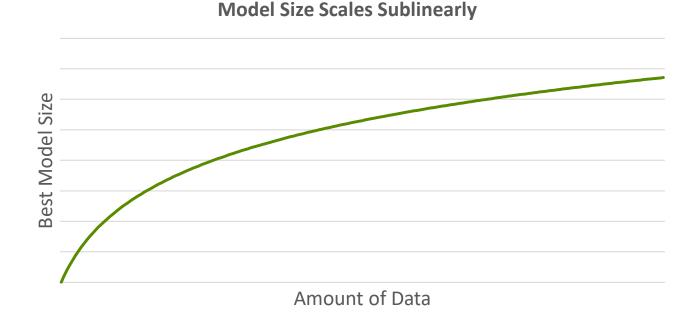
TRAINING

"For any size of the data it's a good idea to always make the data look small by using a huge model."

Geoffrey Hinton

EXPLODING MODEL COMPLEXITY

Good news - model size scales sublinearly

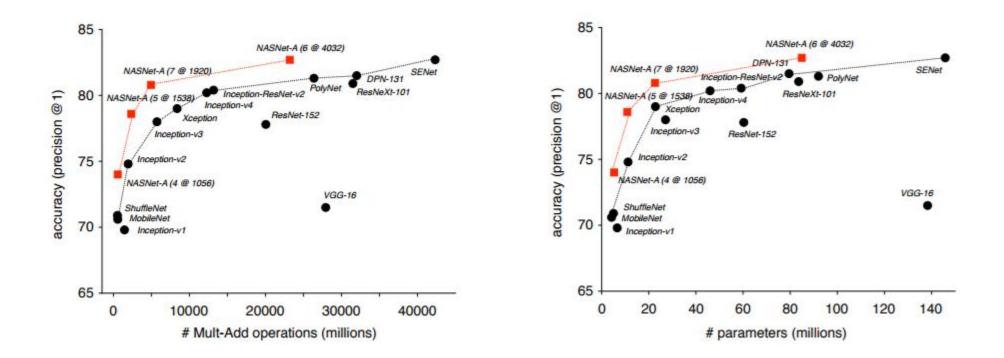


Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.

LEARNING

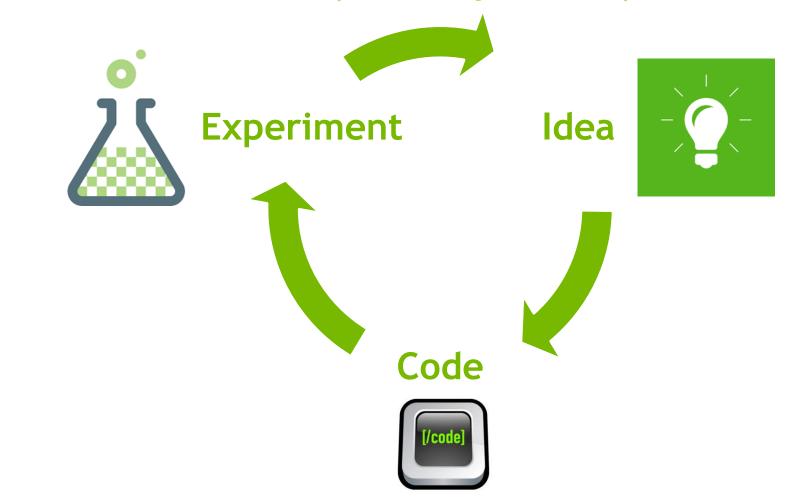
EVIDENCE FROM IMAGE PROCESSING

Good news - model size scales sublinearly



IMPLICATIONS

Experimental Nature of Deep Learning - Unacceptable training time



IMPLICATIONS

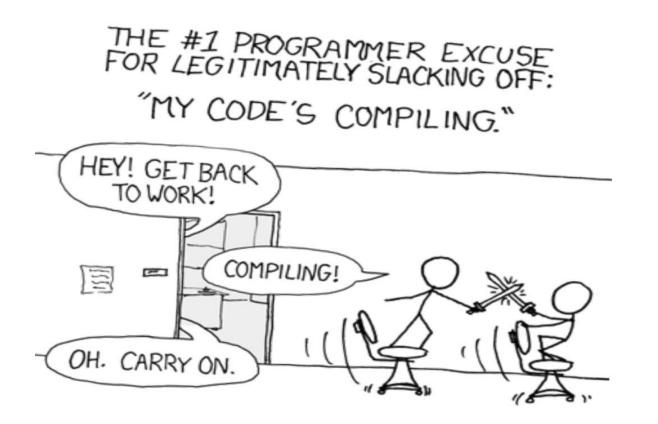
Automotive example

Majority of useful problems are too complex for a single GPU training

	VERY CONSERVATIVE	CONSERVATIVE	
Fleet size (data capture per hour)	100 cars / 1TB/hour	125 cars / 1.5TB/hour	
Duration of data collection	260 days * 8 hours	325 days * 10 hours	
Data Compression factor	0.0005	0.0008	
Total training set		487.5 TB	
InceptionV3 training time (with 1 Pascal GPU)	9.1 years	42.6 years	
AlexNet training time (with 1 Pascal GPU)	2018 1.1 years 2019	2018 5.4 years	

CONCLUSIONS

What does your team do in the mean time



CONCLUSIONS

What does your team do in the meantime?

CONCLUSIONS

Need to scale the training process for a single job

		VERY CONSERVATIVE	CONSERVATIVE	Training From
INVIDIA DGX-1	Total training set	104 TB	487.5 TB	Months or Years
	InceptionV3 (one DGX-1V)	166 days (5+ months)	778 days (2+ years)	2018
	AlexNet (one DGX-1V)	21 days (3 weeks)	98 days (3 months)	
10 NVIDIA DGX-1's	InceptionV3 (10 DGX-1V's)	16 days (2+ weeks)	77 days (11 weeks)	To Weeks or Days
	AlexNet (10 DGX-1V's)	2.1 days	9.8 days	Sondary Montey Tutatdary Wednesday Thursdary Printery Saturdary

BALANCED HARDWARE

DGX-1 as a reference point for solution design

1. NETWORK INTERCONNECT 4X InfiniBand 100 Gbps EDR 2X 10 GbE

2. GPUs 8X NVIDIA Tesla®V100 16 GB/GPU 40,960 Total NVIDIA CUDA® Cores 5,120 Tensor Cores

3. GPU INTERCONNECT NVIDIA NVLink™ Hybrid Cube Mesh

4. SYSTEM MEMORY 512 GB DDR4 LRDIMM

5. CPUs 2X 20-Core Intel® Xeon® E5-2698 v4 2.2 GHz

6. STREAMING CACHE 4X 1.92 TB SSDs RAID 0

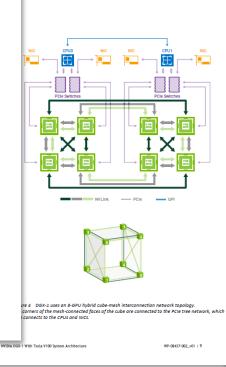
7. POWER 4X 1600 W PSUs (3500 W TDP)

8. COOLING Efficient Front-to-Back Airflow

White Paper

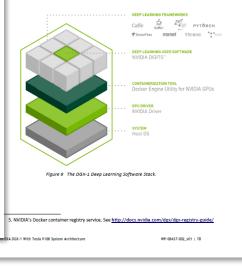
NVIDIA DGX-1 With Tesla V100 System Architecture

The Fastest Platform for Deep Learning

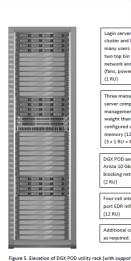


DGX-1 SOFTWARE

to DGK-1 software has been built to run deep learning at scale. A key goal is to enable practitioners to legoly deep learning frameworks and applications on DGK-1 with minimal setup effort. The design of e platform software is centered around a minimal OS and driver install on the server, and provisioning all application and SDK software in Docker (see Section 4.2) containers through the DGK Container spittyr¹, maintained by MVDIA. Containers available for DGK-1 include multiple optimized deep arning frameworks, the MVDIA DIGTS deep learning training application, third-party accelerated lutons, and the NVDIA CLOT Soft. Figure 9 shows the DGK-1 decide marming software stack.



DGX POD **Reference** architectures



Login server

cluster and I

many users

two top bin

(fans, power

Three mana

server comp

managemer weight than configured v

memory (12

(3 x 1 RU = 4

DGX POD an

Arista 10 Gbl

blocking net

Four-rail inte

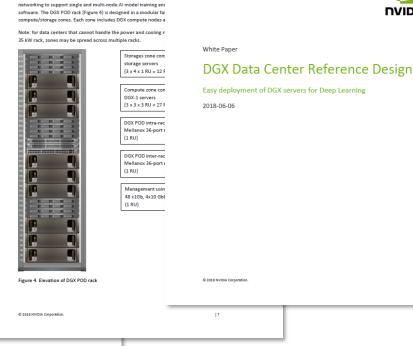
port EDR Infi

(12 RU) Additional co as required

(2 RU)

(1 RU)

network and



9

17

3. DGX POD Rack Design

The DGX POD is an optimized data center rack containing up to nin

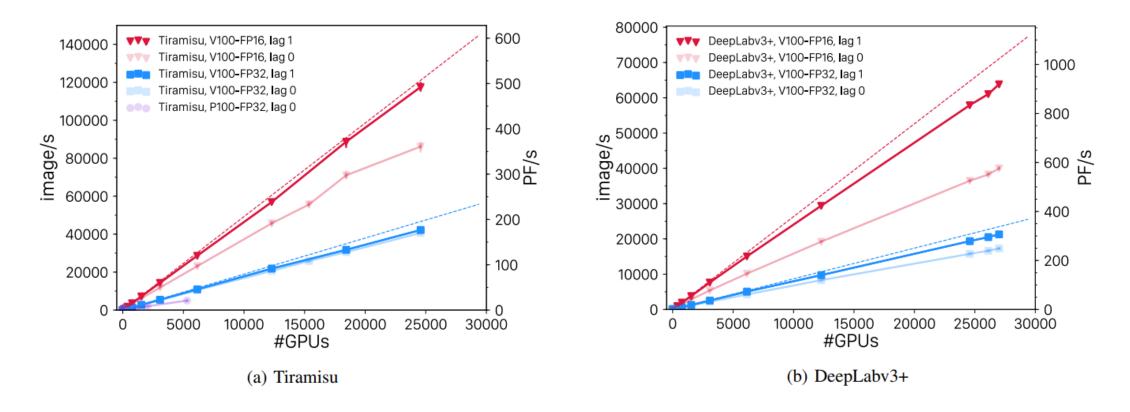
Hiding the complexity of _ hardware

- Hiding complexity of devops _
- Hiding the complexity of software toolkit management
- Partner reference architectures _ with every major storage provider

© 2018 NVIDIA Corporation

TRAINING

SUMMIT 27360 Tesla V100

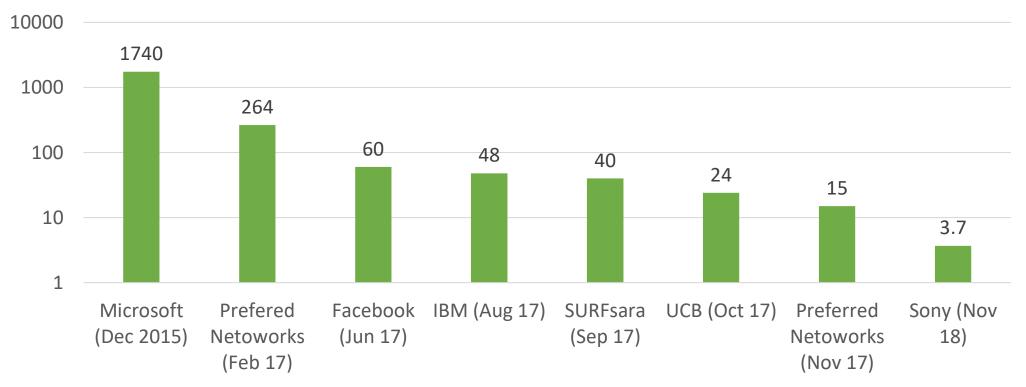


Kurth, T., Treichler, S., Romero, J., Mudigonda, M., Luehr, N., Phillips, E., ... & Houston, M. (2018, November). Exascale deep learning for climate analytics. In Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis (p. 51). IEEE Press.

ITERATION TIME

Short iteration time is fundamental for success

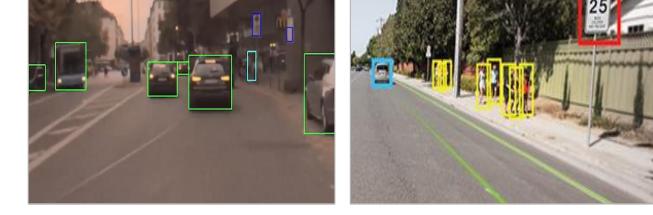
ResNet 50 Training Time in minutes

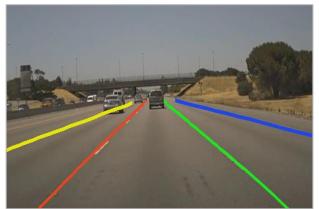


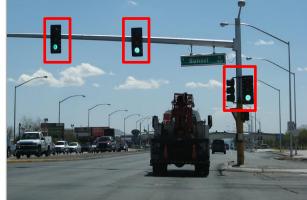
VALIDATION

SAFE AV REQUIRES A COMPREHENSIVE VALIDATION APPROACH

Large Scale | Millions of Miles Diverse Vehicle and World Conditions Data Driven | Scenario based Repeatable and Reproducible End-to-End System Level Test







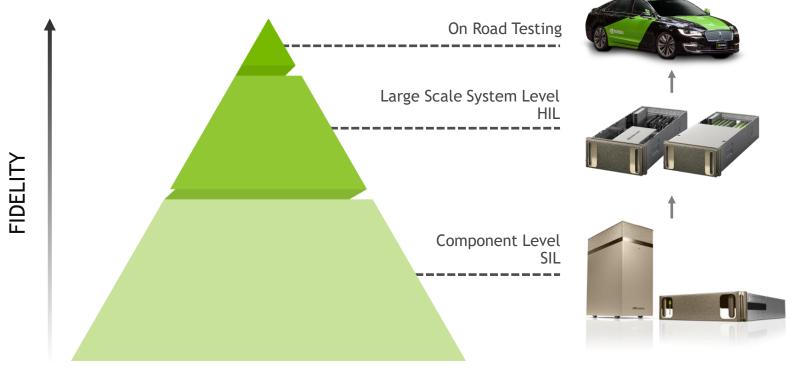
THE AV VALIDATION GAP

COMPONENT LEVEL SIL Low Fidelity | Scalable ON ROAD TESTING High Fidelity | Doesn't Scale

No Coverage for Extreme & Dangerous Scenarios

NVIDIA DRIVE VALIDATION METHODOLOGY

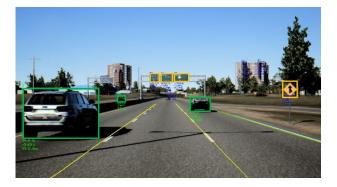
Three Pronged Approach

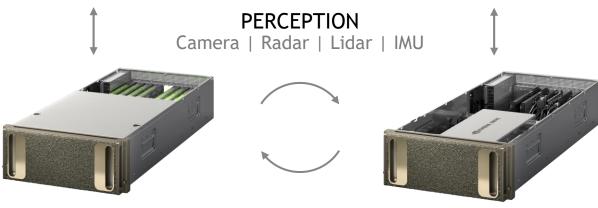


MILES

HARDWARE IN THE LOOP SIMULATION

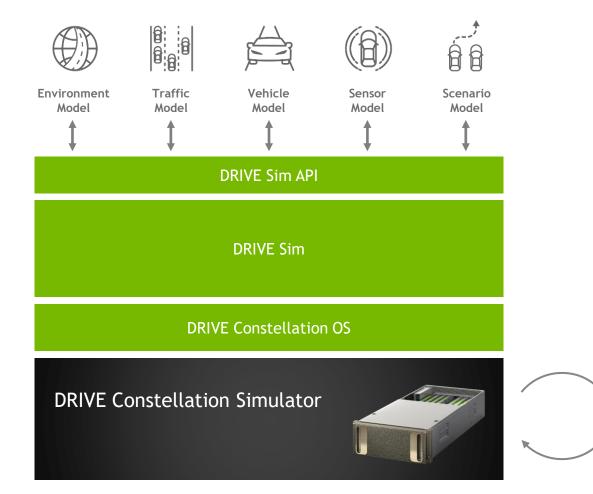
Bit Accurate & Timing Accurate





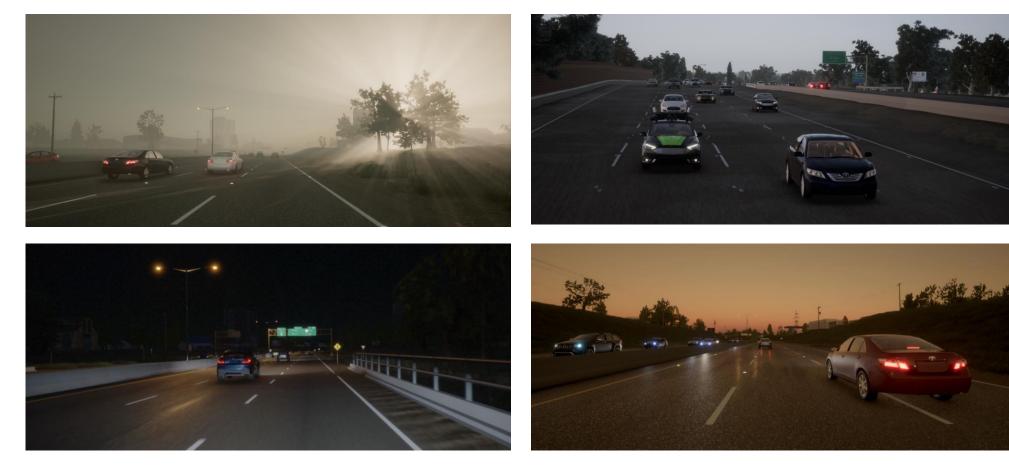
CONTROL Steering | Throttle | Brake

DRIVE CONSTELLATION ARCHITECTURE



Highly Detailed Environments

Change Time of Day



Add Traffic Scenarios

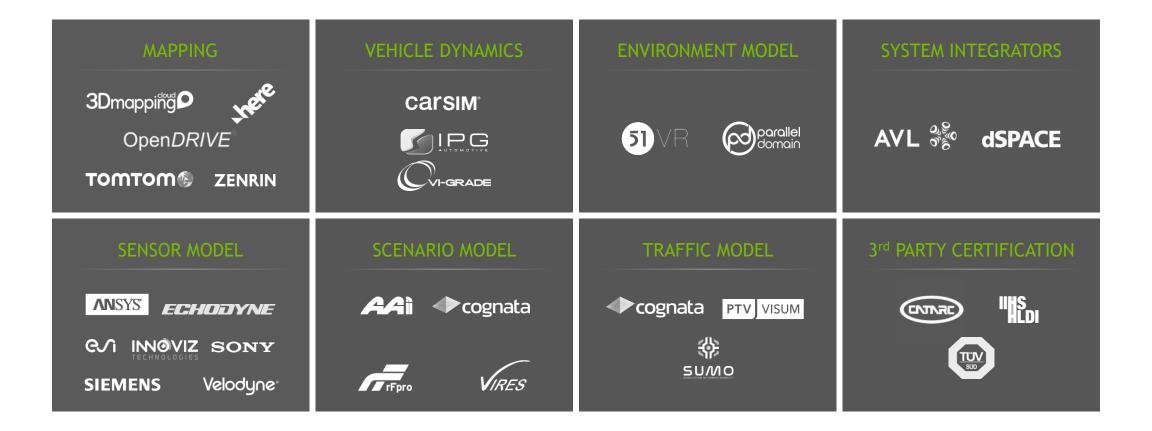
Change Weather

DRIVE CONSTELLATION FOR 3RD PARTY AV VALIDATION

Open | Accessible | Available at Scale

Open Platform | Wide Ecosystem Support Cloud Based Solution | Scalable Accessible to OEMs and Researchers Demonstrate Best Practice for AV Validation

THE DRIVE SIM ECOSYSTEM



BEST PRACTICES FOR AV VALIDATION

Planning the Path to Safety

Partnerships with leading safety organizations Public | Private | Worldwide Creating best practices and standards

THANK YOU

DUDA

twitter.com/nvidiaAl