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Machine Intelligence

Al consists of several subsets of technologies that solve problems in different ways

{ﬂ@) S Machine Learning (ML)

Artificial Intelligence Uses algorithms to help
computers learn by task
specific examples and
progressive improvements,
without explicit programming

Artificial Intelligence (Al)

A computer process that has
learned to solve tasks in a
way that mimics human
decisions

Al solutions today are mostly
used for very specific tasks,
versus general applications

RN Deep Learnlng (DL)

Uses a cascade of processing
layers modeled on neural
network to learn data
representations such as
features or classifications
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Contextual Learning




« Missing contextual information
« Relationships

« Adjacent knowledge
 Layers of complexity without using context to optimize processes
« Missing context of the right data for the right decision
- Unexplainable without the context for how decisions are made




Graphs Enhance Al by Providing Context

Connected Feature Graph
Extraction N .\ Accelerated ML

Context for Accuracy

Context for Efficiency

Knowledge t—“ — Al
Graphs oA «— Explainability

Context for Decisions 2 Context for Credibility




Graphs are Context for Accuracy

Connected Feature Extraction
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Kaggle taught us that data is flat...

Q Competitions Datasets Kernels Discussion Learn ee

Competitions

General InClass Sortby  Grouped v
All Categories v Search competitions Q

18 Active Competitions
Two Sigma: Using News to Predict Stock Movements $100,000
Use news analytics to predict stock price performance 2,895 teams
Featured - K C . ) - ¥ news agencies, time series, finance, money

TWO SIGMA
LANL Earthquake Prediction $50,000
B !'A%A!,asm% Can you predict upcoming laboratory earthquakes? 1,092 teams

EST 1943

W earth sciences, physics, signal processing

Elo Merchant Category Recommendation $50,000
Help understand customer loyalty 3,788 teams

‘J Featured - 14 d ) - ¥ banking, tabular data, regression



...but sometimes it's who you know

 Relationships are often the strongest predictors
of behavior

» Current machine learning methods rely on
vectors, matrices, and tensors built from tables

» These methods simplify, or leave out entirely, :
predictive relationship and network data 1d-tensor 2d-tehsor 3d-tensor

« Graphs add highly predictive features to these
models, adding accuracy without altering
algorithms

« Graphs can infer relationships and add data
where sparse

4d-tensor Sd-tensor 6d-tensor



Connected Feature Extraction

for Predictive Lift

Methods:

« Engineered features (labeled and inferred
relationships)

« Graph algorithms (e.g. Centrality and
Community Detection)

« Graph embeddings (DeepWalk, DeepGL,
Node2Vec, etc.)

O

Example: Financial Crimes

Transaction Fraud
Anti-money laundering (AML)
Claims Fraud

Credit Fraud

Compliance and investigation



Connected Feature Extraction ;-2 orcomecion:
for Fraud Prevention
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Graph Algorithms in Neo4j

GraphConnect 2017 |— GraphConnect 2018 e

. . « Parallel Breadth First Search & DFS
Pathflndlng ? Q ? « A* Shortest Path
| ) g
L 4

+ Shortest Path :
Y K Shortest Path
& Search *.(). « Single-Source Shortest Path ) K?;pZnnianTsze (I?/IST)
« All Pairs Shortest Path

* Minimum Spanning Tree

 Degree Centrality « Harmonic Closeness Centrality

« Closeness Centrality « Dangalchev Closeness Centrality
 Betweenness Centrality « Wasserman & Faust Closeness Centrality
« PageRank » Approximate Betweenness Centrality

» Personalized PageRank

Q « Triangle Count
Community @@ ° » Clustering Coefficients . Balanced Triad (identification)
Detection O ‘. Connected Components (Union Find) + Louvain - Multi-Step
Strongly Connected Components

Label Propagation 2019 Q1

Louvain Modularity - 1 Step e Euclidean Distance
.. . * Cosine Similarity Reference Impl i
N : p ementations
Similarity &  Jaccard Similarity for Graph Embeddings
ML Workflow e Random Walk (Node to Vector)
« One Hot Encoding * DeepGL
DeepWalk

Graph

Powered by Neo4j



Link Prediction

The Link Prediction Problem for Social Networks®

David Liben-Nowell
Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139 USA
dln@theory.lcs.mit.edu

Jon Kleinberg?
Department of Computer Science
Cornell University
Ithaca, NY 14853 USA

kleinber@cs.cornell.edu

January 8, 2004

Abstract

Given a snapshot of a social network, can we infer which new interactions among its members
are likely to occur in the near future? We formalize this question as the link prediction problem,
and develop approaches to link prediction based on measures for analyzing the “proximity” of
nodes in a network. Experiments on large co-authorship networks suggest that information
about future interactions can be extracted from network topology alone, and that fairly subtle
measures for detecting node proximity can outperform more direct measures.

Relative performance ratio versus random predictions
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Graph Embeddings

Deep Feature Learning for Graphs

Ryan A. Rossi, Rong Zhou, and Nesreen K. Ahmed

Abstract—This paper presents a general graph representation learning framework called DeepGL for learning deep node and edge
representations from large (attributed) graphs. In particular, DeepGL begins by deriving a set of base features (e.g., graphlet features)
and automatically learns a multi-layered hierarchical graph representation where each successive layer leverages the output from the
previous layer to learn features of a higher-order. Contrary to previous work, DeepGL learns relational functions (each representing
a feature) that generalize across-networks and therefore useful for graph-based transfer learning tasks. Moreover, DeepGL naturally
supports attributed graphs, learns interpretable graph representations, and is space-efficient (by learning sparse feature vectors).
In addition, DeepGL is expressive, flexible with many interchangeable components, efficient with a time complexity of O(|E|), and
scalable for large networks via an efficient parallel implementation. Compared with the state-of-the-art method, DeepGL is (1) effective
for across-network transfer learning tasks and attributed graph representation learning, (2) space-efficient requiring up to 6x less
memory, (3) fast with up to 182x speedup in runtime performance, and (4) accurate with an average improvement of 20% or more on
many learning tasks.

Index Terms—Graph feature learning, graph representation learning, deep graph features, relational functions, higher-order features,

Inductive Representation Learning on Large Graphs

DeepWalk: Online Learning of Social Representations

Bryan Perozzi Rami Al-Rfou Steven Skiena
Stony Brook University Stony Brook University Stony Brook University
Department of Computer Department of Computer Department of Computer
Science Science Science

{bperozzi, ralrfou, skiena}@cs.stonybrook.edu

ABSTRACT

We present DEEPWALK, a novel approach for learning la-
tent representations of vertices in a network. These latent
representations encode social relations in a continuous vector
space, which is easily exploited by statistical models. DEEP-
WALK generalizes recent advancements in language mod-
eling and unsupervised feature learning (or deep learning) .

from sequences of words to graphs. (a) Input: Karate Graph (b) Output: Representation

DEEPWALK uses local information obtained from trun-

Tin 05 66 03 10 15 20 2%

struc2vec: Learning Node Representations from Structural

Identity

Leonardo F. R. Ribeiro Pedro H. P. Saverese Daniel R. Figueiredo

Federal University of Rio de Janeiro Federal University of Rio de Janeiro Federal University of Rio de Janeiro

William L. Hamilton* Rex Ying* Jure Leskovec
wleif@stanford.edu rexying@stanford.edu jure@cs.stanford.edu

Department of Computer Science

Stanford University ABSTRACT

Stanford, CA, 94305

Abstract

Low-dimensional embeddings of nodes in large graphs have proved extremely
useful in a variety of prediction tasks, from content recommendation to identifying

inherently fransductive and do not naturally generalize to unseen nodes. Here we
present GraphSAGE, a general inductive framework that leverages node feature

Structural identity is a concept of symmetry in which network
nodes are identified according to the network structure and their
relationship to other nodes. Structural identity has been studied
in theory and practice over the past decades, but only recently
has it been addressed with representational learning techniques.
This work presents struc2vec, a novel and flexible framework for
protein functions. However, most existing approaches require that all nodes in the learning latent representations for the structural identity of nodes.
graph are present during training of the embeddings; these previous approaches are struc2vec uses a hierarchy to measure node similarity at differ-
ent scales, and constructs a multilayer graph to encode structural
similarities and generate structural context for nodes. Numerical

Systems Eng. and Comp. Science Dep. Systems Eng. and Comp. Science Dep. Systems Eng. and Comp. Science Dep.

leo@land.ufrj.br savarese@land.ufrj.br daniel@land.ufrj.br

Figure 1: An example of two nodes (v and v) that are struc-
turally similar (degrees 5 and 4, connected to 3 and 2 trian-
gles, connected to the rest of the network by two nodes), but
very far apart in the network.



And if we don't want to flatten our graphs?

OCTAVIAN Latest Articles Talks About

Our work

We research new approaches to machine
reasoning and graph-based learning.

We're working to build machines that can answer useful
guestions, using neural reasoning and knowledge graphs.

We write articles, give talks and host workshops about

our work.

We're an open-source research organization and welcome

you to join us and contribute.




And if we don't want to flatten our graphs?

Model Learned Params Data
Linear Regression | y=mx+c m List<(x, y)>
Image Classifier P(class | image) = CNN(image) CNN weights List<(image, class)>
NN Embedding P(path | node) = NN(path) node embedding, ' Node dictionary
NN weights List<(path, node)>
Graph Regression | node.prop = F([sub]graph) F weights List<(node, [sub]graph)>
or Graph, pattern
Graph Classifier P(class | [sub]graph) = F([sub]graph) F weights List<([sub]graph, class)>
or Graph, pattern
Graph Embedder P(subgraph | node) = F(graph) node embedding, @ Graph
F weights

OCTAVIAN




Graphs are Context for Efficiency
Graph Accelerated ML

neoqj



Brute force is as inelegant as it sounds

* 56% of enterprise ClOs say
iterative model training is the
largest ML challenge’

« Renting more and more GPU time
is not the answer - not every
problem is “embarrassingly
parallel”

= [ N = o
= - v i
/ / P !

 Table joins bog down data
pipelines







Accelerate Your ML Process

U

Methods: Example: Recommendations
« Replace table joins with graph queries « Realtime

. o recommendations
« Replace sparse matrices and directional

relationships with more efficient graph *  Customer |
structures (i.e. collaborative filtering via Ségmentation/KYC
Cypher query vs. matrix factorization) Churn analysis
Dynamic pricing
Promotions
Patient modeling

« Use subgraph filtering to accelerate ML
pipelines (Cypher queries, collaborative
filtering, community detection, clustering, etc.)



Graphs are Context for Decisions
Knowledge Graphs

neoqj



Context doesn’t fit cleanly in an equation

« A connected, dynamic, and understandable repository of different data types

e Link siloed or external data sources

in an intelligent way - _
. = f ﬁi%\ g ~— //
 Key to understand your unique, W {’
enterprise language - h
>

PRODUCT

 Knowledge Base # Knowledge Graph DATA




3 Types of Knowledge Graphs

Context Rich Search External Insight Sensing Enterprise NLP

Internal knowledge External data source Graph technical terms,
documents & files, with aggregation mapped to acronyms, abbreviations,
meta data tagging entities of interest misspellings, etc.
Examples: Examples: Examples:

Search « Supply chain/compliance risk * Improved search

Customer support - Market activity aggregation « Chatbot implementation
« Document classification « Sales opportunities * Improved classification

I
CISCO.

2k pitneyBowes ey eATERPILLAR

THOMSON REUTERS

ﬂeOL.j



Graphs are Context for Credibility
Al Explainability



Credibility Matters
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When you need to open the Black Box <%

*There are multiple types of explainability

- Explainable data - what data was used to train the model, and
why?

- Explainable predictions - what features and weights were
used for this particular prediction?

- Explainable algorithms - what are the individual layers and
thresholds to a prediction?

* How do you add predictability, without reducing performance?



When you need to open the Black Box

Explalnable Data: Graphs provide
5 - data lineage - when, where, and often why
L\

Bl NC_000003.12:.148741286G>A

. - data was accessed
2ENG I il Y7y
azsc A WS - - .- . .
N Explainable Predictions: Associating
P i ¢ _‘;@,ﬁ: : nodes in a neural network to a labelled
: "\{ ; knowledge graph allows for traversing
— = Ny related documents to an explanation
- Lo S 2 n ‘{3 ' - 4 .E.'. g,,b?aed;§3636579n
@Nswf r;swgﬁze»m PR TR o o A g e Explainable Algorithms: Early
4 7 anei N T & resntsicnty —— F@S@ArCh shows that constructing tensors
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. K : VLB NG § sl from graphs using weighted relationships
', o ’ ~\I N i B { " from nowledge Grap a
& M*i;/ s (BRI s ' =% may lead to explainable neural network
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Graphs are Context for Al



Aggregation is not Learning without Context
Intelligence is not Intelligence
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Will Graphs Improve Your Al?

- n
> X 6
% =S
Predictive . ,
Relationships & Table Joins o eterogenous
Network | Directional Knowledge
Sparse Matrices Sources

Components



Thanks for listening!

Mark Needham

mark.needham@neo4j.com

@markhneedham
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