Hubble

Internet Telescope
Mehmet Oner Yalcin

About Me

Mehmet Oner Yalgin
Senior Network Data Scientist SKY UK Analytics & Planning Team
Mix of Data Scientist, DevOps and Network Engineer

Spending some of his time on data/statistical analysis on both network
and non network data

Building tools for network planning, performance measurement and
network automation

Enjoys coding in R, Python and SQL.

y/oneryalcin mmneryalcm 0 /oneryalcin

2

sky

What is this talk about?

* It's not about automating network devices.

It's not only about programming.

It's not only about data analysis either.

It Is about network measurement using basic tools like
ping etc...

It is about combining open source tools to build a
platform for scalable, distributed network performance
measurement tool.

What is Hubble?

* |f you assume Internet is the universe, you can point Hubble to a
certain part of universe(internet) and take measurements.

* Hubble is an automated network layer measurement tool:
— Concurrently measuring multiple paths to same destination
— Custom metadata enrichments: BGP, Geolocation
— Automatic host discovery

— Scalable up to ~100K concurrent measurements with single probe
(Potentially much more with multiple probers)

* Basically a Python library. It is a thin wrapper around network scan,
measurement and enrichment tools

* Uses ELK stack (ElasticSearch, Logstash, Kibana) as data store,

. . . . Hubble Space Telescope
computation and visualization. Credits: NASA

| sky

https://www.nasa.gov/mission_pages/hubble/story/index.html
https://www.nasa.gov/mission_pages/hubble/story/index.html

Hubble Story

* Sky peers with a few transit providers to route its traffic globally

* Our transit providers vary in their size and geographic presence

* We did not have any proper performance metric to decide which transit provider
is a better choice from Sky’s perspective

* Hubble was created to addresses this problem.

* Hubble queries subnets of interest, scans hosts in these subnets and measures
network layer performance for each Transit Provider.

* We are expanding to do more targeted measurements across Europe.

sky

Problems

* Bad news, measuring transit provider means, measuring whole internet

— There are more than 700K routes in BGPv4 global routing table, many many
hosts.

- Zipf’'s Law P, x 1/n” says that the frequencies fof certain events are
inversely proportional to their rank r. In our case it's not frequency but
traffic amount received from each subnet.

* Most of internet traffic is mostly generated from relatively small number
of, not all 700K subnets are equal. Our netflow analysis shows that 500
subnets are responsible more than 70% of our transit traffic.

1.E+06

¢ ~700K->500 is agood compromise. ciwn

1.E405 * —Zipf's law, a=1

* Hubble queries netflow collectors to | .
find out subnets of interest.

Frequency
m
o
8

1 10 100 1000 10000 100000
Rank

Problems

* How can we ensure egressing (hard requirement) and ingressing
traffic (soft requirement) uses the same transit provider?

* Standard routing is destination based. Sourced based routing at
P&T routers ensures egressing traffic egresses through the desired

transit provider.

* If we require returning traffic to arrive from the same transit
provider, we can do it by BGP advertisements.

— Each group of probers lives in a certain /24 public subnet and this
subnet is only advertised from a specific transit provider. This will
ensure traffic will ingress from the same egress path.

O
sky

Routing

Advertise subnet A to TP-1

Advertise subnet B to TP-2
Advertise subnet B to TP-3

- e—

Peer & Transit

Router

———p TP3

Source route subnet A to TP-1

Source route subnet B to TP-2

Source route subnet B to TP-3

System Requirements

» Target Selection: Measurement targets should be chosen automatically and dynamically.
 Scaling: Each component can be horizontally scaled if more scaling is required

* Microservices: Each component must be independent, no tight coupling allowed (except ELK stack).
communication should happen through message queues.

* Development: Each component should be treated as a plugin, allowing a modular design, for example,
adding a TCP probe must be easy and should not require significant integration effort.

* Enrichment: Measurement data must be enriched via few resources like BGP and Geo tagging

« Data Analysis: Data ingestion, storage and compute platform must be horizontally scalable and should
allow real-time analysis

* Data Visualization: Dashboard should allow users to query data in different dimensions, fast and near real-
time

| sky

Components - Subnet ingest

* Hubble takes a list of subnets as input. Currently
supports:
— Arbor API
— Kentik AP
— Staticfile

* These subnets are sent for host discovery to
message bus.

10

Components - Host Discovery

* Hubble scans and discovers responding hosts
for each subnet. Currently supports:
— ICMP scans
— TCP SYN scans

* Under the hood it uses Zmap for scans.
https://zmap.io/

— ZMap is a fast single packet network scanner designed for
Internet-wide network surveys.

The ZMap Project

* We run scans each day. Please see scanning
best practices for good internet citizenship

| sky

https://zmap.io/
https://github.com/zmap/zmap/wiki/Scanning-Best-Practices

Components - Host Discovery

from hubble.collect.zmap import Zmap
SKY_PREFIX = '5.64.0.0/13"'

zmap = Zmap() # Create a Zmap instance
return max 50 Hosts from SKY_PREFIX, scanning bandwidth max is 1Mbps
hosts = zmap.icmp_scan('5.64.0.0/13', max_results=50, bandwidth=1000)

print(hosts)

['5.64.118.25",
'5.64.154.81"',
'5.64.160.228",
'5.64.166.63",

'5.71.233.19°',
'5.71.236.232",
'5.71.70.179"']

12

sky

Components - Probers

* Each prober takes measurement from
discovered host each configured interval.

* Hubble uses Scamper for taking large scale
measurements.

— Scamper is a tool that actively probes the Internet in order
to analyse topology and performance. It is released by
Center for Applied Internet Data Analysis (CAIDA).

— Scamper is designed to actively probe destinations in
parallel (at a specified packets-per-second rate) so that
bulk data can be collected in a timely fashion.

13

https://www.caida.org/tools/measurement/scamper/
https://www.caida.org/home/

Components - Probers

1

OO 5 W N

0

9
10
11
12

from hubble.probers.scamper import Scamper

provider 1s a custom tag appened to each scan
prober_a = Scamper(provider='transit_provider_a')

Ping all in "hosts [list 10 times with 3 seconds interval,

do not summarize and return as dict, (other option pandas df)

result = prober_a.get_measurement_icmp(host_list=hosts,
interval=3,
probe_count=10,
only_stats=False)

M sky

{'asn': 5607,
'dst': '5.71.80.156',
'ping_sent': 10,

'provider': 'transit_provider_a’,
'responses': [{'reply_ttl': 55,

'rtt': 12.877,

'rx': {'sec': 1523823546, 'usec':

{'reply_ttl': 55, 'rtt': 13.532,
{'reply_ttl': 55, 'rtt': 17.446,
{'reply_ttl': 55, 'rtt': 13.023,
{'reply_ttl': 55, 'rtt': 12.897,
{'reply_ttl': 55, 'rtt': 12.677,
{'reply_ttl': 55, 'rtt': 12.494,
{'reply_ttl': 55, 'rtt': 12.604,
{'reply_ttl': 55, 'rtt': 12.826,

{'reply_ttl': 55,
'rtt': 12.788,

353747}},
'rx': {'sec':
'rx': {'sec':
'rx': {'sec':
'rx': {'sec':
'rx': {'sec':
'rx': {'sec':
'rx': {'sec':
'rx': {'sec':

'rx': {'sec': 1523823573, 'usec': 384819}}1,

'start': {'sec': 1523823546,
'statistics': {'avg': 13.316,
'loss': 0,

'max': 17.446,

'min': 12.494,

'replies': 10,

'stddev': 1.402},

'subnet': '5.64.0.0/13'}

'usec':

340833},

1523823549,
1523823552,
1523823555,
1523823558,
1523823561,
1523823564,
1523823567,
1523823570,

'usec':
'usec':
'usec':
'usec':
'usec':
'usec':
'usec':
'usec':

356475}},
365542}},
364953}},
366755}},
369753}},
373804}},
376804}},
380906} },

sky

Components - Probers

Ping all in hosts list 10 times with 3 seconds interval, summarize and

save as pandas dataframe (default dict, no summarize)

result = prober_level3.get_measurement_icmp(host_list=hosts, interval=3,
probe_count=10, frmt='pandas',
only_stats=True)

asn avg dst loss max min ping_sent provider replies stddev subnet time
#0 5607 22.271 5.64.119.13 0 50.001 12.628 10 level3 10 10.741 5.64.0.0/13 2018-04-15 21:14:34
#1 5607 13.069 5.64.136.32 0 38.211 8.683 10 level3 10 8.775 5.64.0.0/13 2018-04-15 21:14:34
#2 5607 16.515 5.64.210.52 0 20.955 15.015 10 level3 10 1.955 5.64.0.0/13 2018-04-15 21:14:34
...

47 5607 10.975 5.71.228.145 0 20.009 9.550 10 level3 10 3.022 5.64.0.0/13 2018-04-15 21:14:36
48 5607 14.104 5.71.78.43 0 15.370 12.936 10 level3 10 0.670 5.64.0.0/13 2018-04-15 21:14:36
49 5607 14.035 5.71.80.156 0 18.024 12.742 10 level3 10 1.729 5.64.0.0/13 2018-04-15 21:14:36

m sky

Components - Enrichers

* Measurement data is enriched with BGP and
Geolocation metadata so more insights can
be inferred.

* ASN information appended to each scan using
pvyasn (Now Logstash 6 also supports ASN Lookup)

— pyasn is a Python extension module that enables very fast IP address to
Autonomous System Number lookups developed by Economics of
Cybersecurity research group at Delft University of Technology

* Elastic’s Logstash module appends
Geolocation tag for each scan before

sending to EleasticSearch for indexing.

17

6 Delft
TUDelft &y
s |0gstash

sky

https://github.com/hadiasghari/pyasn

Components - BigData Compute, Storage and Visualization

* Measurement data saved to ElasticSearch

NoSQL DE. m» o|asticsearch

— Elasticsearch is a distributed, RESTful search and analytics engine N 4
and horizontally scalable.

— Elasticsearch lets us perform and combine many types of
searches; structured, unstructured, geo and metric.

* Kibana is used as visualization and dashboarding k : b
platform. I a n a

— Kibana is used for visualizing Elasticsearch data and
navigate the Elastic Stack

18 sky

https://www.elastic.co/products/elasticsearch

Components - Message Bus

 Data moved between instances of

components should be done by a message -
abbit VIO

* Hubble library has support for rabbitmg, this
allows each component to scale

Independently.

— For example we may need 10 probers to work in
parallel, and each prober subscribes to work queue
from Zmap. Message bus is responsible for allocating
jobs to each prober instance, allowing parallelism and
load sharing.

19

https://www.rabbitmq.com/

Software Components

/Transit Provider-1 prober \

(scamper

.

~N

VAN

e :
elasticsearch

(&

J

From Netflow
(Arbor, Kentik)
_

s N\
Subnet Getter

qogstash h

(filebeats)

_ Y,
‘kibana

/Tran5|t PrOV|der-2 probe\r

scamper

.

) (filebeats)

‘Zmap

‘rabbitmq |

/

(.)
elasticsearch

2

Iogstash h

)

)

20

/Transit Provider-3 prober\

(scamper

.

~N

J

(.)
elasticsearch

A=

J

logstash
(filebeats)

)

SKy

Components Interaction

1 TP-1 TP-1 TP-1
- rmq ﬁ'abbitmq rma [zmap [rabbitmq }
\Jv o \

TP-1 TP-2 TP-3
scheduled runs ASN Enrichment = _ [_H} _

A S

JSON file 1 JSON file

TP-1

ElasticSearch Cluster

Level3 W
[kiba na]J:

7

[

1

L (TP-1 TP-2 TP-3
1

I

1

\

[elasticsearch] [elasticsearch] [elasticsearch] S Iq
/]

Dashboard: General View

RTT 5D vs Provider Loss vs Country by Provider

@ 50th percentile of Ping RTT Std Deviation in Percentiles @ 95th percentile of Ping RTT Std Deviation in Percentiles @ level3 @gtt @ntt

@ 99th percentile of Ping RTT Std Deviation in Percentiles (A

@
£ 003
a =
£
515 g 0.2
g s
S 10 5
2 B0
=] 5 ® 0.1
. N /On

0
E s 2 ’ Ol Ol Ol S -
= = g w w
£ 2 e G 2 2 & E i 2 g = b i 5
a

Transit Provider geoip.country_code2.keyword: Descending

Median STD by Time Median RTT by Time

©ntt @ level3 @gtt ©ntt @level3 @gtt

& e
z 0.25 60
-]
T 02 50
n
¢ E
= = 40
F 015 =
2 £ 30 :3g:::::::::::9""""“"
2 0 v ——
= =20
E 0.05 10
0 0
19:00 22:00 01:00 04:00 07:00 10:00 13:00 16:00 19:00 22:00 01:00 04:00 07:00 10:00 13:00 16:00
@timestamp per 30 minutes @timestamp per 10 minutes
SD by Country Median 5D Median RTT Mean Packet loss "
Sweden i
Serhia
pesiom CONB0 Sputh Africa Austria Peru

Republic of Lithuania 0.207 28.835 0.027

i i i . Hungary
memco AIISIra"a cnl“a Pola“d Puerto chﬂ 50th percentile of Standard Deviation of

snain ||'an RTT 50th percentile of RTT Average Packet Loss
i Ganada
Germany Sinoapore Kosovo

Average SD - by Country e

http://10.245.170.119:5601/

Dashboard: Filter by Country

geoip.country_code2: "CN" I
RTT SD vs Provider Loss vs Country by Provider
® 50th percentile of Ping RTT Std Deviation in Percentiles @ 95th percentile of Ping RTT Std Deviation in Percentiles @gtt @level3 @ntt
@ 99th percentile of Ping RTT Std Deviation in Percentiles (A]
(A
8 50 y 005
2
ta g oos
% - % 0.03
S 20 .
a % 0.02
1
3 ’ 2 oo
E o -
o bl 0
g H 5
Transit Provider geoip.country_code2.keyword: Descending
Median STD by Time Median RTT by Time
@ ntt @ level3 @ gtt @ ntt @ level3 @ gtt
(A @
400
5 10
.
L 0
g E — o
————e T ——— e —
3 ’ B0 ——— A~ ——
3
‘5 4 =
S 100
T 2
= D
0 e — 0
03:00 04:00 05:00 06:00 07:00 08:00 08:00 10:00 11:00 12:00 13:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00
@timestamp per 30 minutes @ @timestamp per 10 minutes
SD by Country Median SD Median RTT Mean Packet loss
O [3 3 8 2 3 6 [6 I 9 [J
50th percentile of Standard Deviation of RTT 50th percentile of RTT Average Packet Loss

Average SD - by Country

http://10.245.170.119:5601/

Dashboard: Filter by Transit Provider

_type: gtt

RTT SD vs Provider «" Loss vs Country by Provider

® 50th percentile of Ping RTT Std Deviation in Percentiles @ 95th percentile of Ping RTT Std Deviation in Percentiles [J:8

@ 99th percentile of Ping RTT Std Deviation in Percentiles (A

Q

=
o
8 5 03
215 4
c =
= ,_“E 0.2
210 #
H g
é 5 s 0.1
: : [[T
E o . I N e e
]
® & 9 2 S 2 g 5 2 g 8 % 5 8 S !
8 Transit Provider geoip.country_code2.keyword: Descending
Median STD by Time Median RTT by Time

® gt ot

Q A
5 025 30
§ 0.2 —————
v =
2 o
% 015 c 20
- &
B o1 E
H] 10
T 005
=
0 0
03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00
@timestamp per 30 minutes @timestamp per 10 minutes
SD by Country Median SD Median RTT
Bulgaria Puerto R Selgiem
South Airica ertoRico cpina Hungary

- Republic of Lithuania 0.212 27.182

50th percentile of Standard Deviation of RTT 50th percentile of RTT

Average SD - by Country

10:00 11:00 12:00 13:00

Mean Packet loss

0.029

Average Packet Loss

http://10.245.170.119:5601/

Limelight Case

* Limelight is one of the CDNs and similar to other CDNs SKY exchanges important amount of
traffic with Limelight. Therefore Limelight ASN always comes up in our target list.

* The Hubble analysis shows Limelight is not well connected via GTT or NTT.
* Median RTT for GTT and NTT is around ~80ms and for Level3 ~12ms.

Median RTT by Time

® level3 @ ntt @ gtt

Median RTT
F oy (=] (% =]
[) [- [)

ha
(=]

]

06:00 07:00

(08:00

09:00

10:00

11:00

12:00

13:00

14:00

16:00

17:00

Limelight Case - GTT

* Digging deeper shows that GTT is connected to Limelight through their PNl in New York

traceroute to 178.79.243.158 (178.79.243.158), 30 hops max, 6@ byte packets
b@fffe@l.bb.sky.com (176.255.248.1) 1.589 ms 4.379 ms 5.839 ms
172.16.5.7 (172.16.5.7) 11.327 ms 11.757 ms 12.204 ms
b@ffa222.bb.sky.com (176.255.162.34) 5.493 ms 9.979 ms 10.538 ms
b@ffa225.bb.sky.com (176.255.162.37) 6.355ms 7.021 ms 9.276 ms
b@ffa226.bb.sky.com (176.255.162.38) 7.5480 ms B8.655 ms 8.064 ms
agel.cr@-lon8.1pd4.gtt.net (77.67.65.173) 12.293 ms 2.622 ms 3.224 ms
xe-2-0-0.cr8-nyc3.1pd.gtt.net (89.149.183.38) 790.258 ms 71.482 ms 70.781 ms
ipd4.gtt.net (69.174.2.178) 68.866 ms 69.531 ms 71.948 ms

lag28.fr6.lon. llnw.net (68.142.88.61) 72.418 ms 72.897 ms 70.835 ms
lag27.fr4.fral.llmw.net (68.142.88.99) B86.191 ms B86.606 ms B87.078 ms
vi2023.dr@l.fral.llmw.net (178.79.240.22) B85.212 ms B85.682 ms B85.145 ms

1
2
3
4
5
6
7
8
9
9

1

—
—

Limelight Case - NTT

* NTT does not have direct peering with Limelight so it connects through GTT
traceroute to 178.79.243.158 (178.79.243.158), 30 hops max, 6@ byte packets

1
2
3
4
5
6
7
8
9
@

1

o e
¥, I - FE I K

b@fff101.bb.sky.com (176.255.241.1) 1.724 ms 2.174 ms 2.780 ms

172.16.5.7 (172.16.5.7) 11,843 ms 11.443 ms 11.826 ms

b@ffa222.bb.sky.com (176.255.162.34) 3.159 ms 3.547 ms 4.408 ms
b@ffa225.bb.sky.com (176.255.162.37) 5.399 ms 6.401l ms 7.530 ms
b@ffa226.bb.sky.com (176.255.162.38) 6.980 ms B8.823 ms 8.101 ms
ae-1.r@d.londen@l.uk.bb.gin.ntt.net (83.231.199.161) 10.146 ms 3.925 ms 4.472 ms
ae-8.r25.londenl2.uk.bb.gin.ntt.net (129.250.3.2) 3.992 ms 4.832 ms 3.029 ms
ae-22.rd0.londenl®.uk.bb.gin.ntt.net (129.250.4.48) 3.329 ms 4.671 ms 3.600 ms
ae8.crl@-lonl.ip4.gtt.net (141.136.96.181) 6.806 ms 6.179 ms 5.773 ms
et-9-1-0.cr9-nyc3.1p4.gtt.net (89.149.138.238) 73.775 ms et-5-3-0.cr9-nyc3.1p4.gtt.net (89.149.187.18¢
ipd4.gtt.net (69.174.2.206) 73.462 ms 73.199 ms 72.894 ms

lag29.fr5.1lon.11lnw.net (68.142.88.59) 80.367 ms ve5.fr4.1ga.1lmw.net (69.28.172.206) 73.754 ms lag29.
lag28.fr6.1lon.1lnw.net (68.142.88.61) B88.513 ms B80.709 ms tgel-5.fr6.lon.11lnw.net (178.79.195.62) 8
lag27.fr4.fral.1lmw.net (68.142.88.99) 118.298 ms 118.491 ms 117.084 ms

viZ2024.dr@2.fral.1lmw.net (178.79.240.26) 96.884 ms v12023.dr@l.fral.llmw.net (178.79.240.22) 96.753

SKy

27

Limelight Case - Level 3

* Level 3 has peering with Cogent and Cogent also peers with Limelight in
Europe, thus having the lowest RTT

traceroute to 178.79.243.158 (178.79.243.158), 30 hops max, 6@ byte packets
bOfff201.bb.sky.com (176.255.242.1) ©0.784 ms ©.981 ms 1.098 ms
172.16.5.7 (172.16.5.7) 3.516ms 3.720 ms 3.893 ms
b@ffa222.bb.sky.com (176.255.162.34) 1.248 ms 1.441 ms 1.615 ms
b@ffa225.bb.sky.com (176.255.162.37) 2.876 ms 3.085 ms 3.921 ms
b@ffa226.bb.sky.com (176.255.162.38) 1.914 ms 2.138 ms 2.320 ms
lag-115.ear2.LondonZ.Level3.net (195.50.116.125) 1779.522 ms 1751.281 ms 1669.027 ms
Cogent-level3-100G.LondonZ.Level3.net (4.68.72.186) 5.544 ms be3356.ccrz2l.lon@l.atlas.cogentco.com (130.117.14.133) 3.503 ms
be2208.rcrZl.b@15589-1.1on@1.atlas.cogentco.com (154.54.37.66) 7.809 ms be2950.rcrZl.b@23101-0.1ondl.atlas.cogentco.com (130.

149.6.147.150 (149.6.147.150) 3.822 ms 149.6.147.202 (149.6.147.202) 4.785 ms limelight.demarc.cogentco.com (149.14,147.210)
178.79.248.12 (178.79.248.12) 6.138 ms lag9.fr4.cdgl.1lrnw.net (68.142.88.111) 12.924 ms tgel-5.fr6.lon.1lrnw.net (178.79.195.6
lagl.fr3.cdgl.1lnw.net (185.178.52.12) 13.212 ms laglZ.fr3.ams.llnw.net (68.142.88.66) 12.458 ms lag27.fr4.fral.llrnw.net (68.
v12023.dr@l.fral.1lnw.net (178.79.240.22) 17.763 ms * *

vi2013.dr@l.fral.llnw.net (178.79.240.14) 13.201 ms 16.271 ms *

Limitations

* L4 and L7 measurement probes need to be developed for more service layer
analysis (currently there is support for only ICMP measurements)

* No support for IPv6 yet

* Hubble forks a new process for Scamper using python'’s subprocess module.
Hubble wraps only command line interface for Zmap and Scamper. There is no

deep level of integration. Needs better integration for parallelism.

* Ping, traceroute ..etc are blocking processes. One layer of parallelism is
provided by monkey patching using Python geventlibrary for subprocess
module. asyncio was introduced in Python 3 haven't exploited it yet.

* Installation is slightly tricky due to dependencies, need to containerize.

29 sky

