
THE COSMIC METHOD OF SOFTWARE SIZING AND ITS

USES IN MANAGING AND ESTIMATING SOFTWARE

ACTIVITIES

BCS Advanced Programming Group meeting

12th April 2018

Charles Symons

© Charles Symons 2018

Agenda

 Goals: the importance of measuring software size

 Overview of the COSMIC method

 The acid test. Do COSMIC sizes correlate with effort?

 Conclusions and future

2

© Charles Symons 2018

The goal: master the whole cycle of managing software

processes

Measure actual

performance and

‘cost-drivers’

Analyse and learn

Establish

benchmarks

Control

performance

against targets

Estimate future

processes

Data repository

3

© Charles Symons 2018

Few organizations really master the control cycle
4

 High proportions of software project failures and

cost over-runs

 Who does best?

 Commercial software suppliers – a matter

of survival

 Agile method practitioners – (maybe) but

only at the team level

 Why the problems? Developing software is partly an

unpredictable process

© Charles Symons 2018

The performance of software processes has various

aspects, and they are tradeable

Project achievement vs plan

• Actual vs. estimated:

Effort, Duration, Size

Project productivity

• Size / Effort

Project speed

• Size / Duration

Product quality

• Defect density (# Defects/Size)

• Functional (e.g. business needs)

• Technical (e.g. maintainability,

response time, etc.)

… and the performance of on-going maintenance and enhancement

processes

5

© Charles Symons 2018

Mastering the control cycle requires a sound

method for measuring software size

Sizing method options:

Counts of Source

Lines of Code:

X Can’t estimate until software designed

X Technology-dependent, no standards

Functional size:  International standard methods

 Technology-independent

 ‘First Generation’ methods have limitations

Development method

specific, e.g. UCP,

OOP, Story Points, etc.

X No reliable standards; benchmark data

possible only locally

© Charles Symons 2018

Simple example: using the control cycle data to

estimate effort for a project, iteration, etc.

‘Best’ estimated effort =
Adjustments for

project-specific

‘cost-drivers’

Estimated software size

Benchmark project productivity
x

Measure productivity =
Software size

Project effort

(Establish average ‘benchmark’

productivity for the type of project)

Completed projects:

‘Typical’ estimated effort =
Estimated software size

Benchmark project productivity

New project:

7

© Charles Symons 2018

A huge number of possible cost-drivers

can affect performance

Staff

problem-area

experience

SIZE

Risk

Domain

(business,

real-time)

Number of implementations

8

© Charles Symons 2018
Changes

Non-functional
requirements

Summary: there are inherent challenges to

implement the software control cycle:

 The performance of software processes has multiple,

tradeable aspects

 There are so many variables, it is impossible to build

general, statistically-valid estimation models for more than a

few of them

 Conclusions:

 Collect your own size, effort, etc., data

 Establish your own size/effort relationships

9

© Charles Symons 2018

Agenda

 Goals: the importance of measuring software size

 Overview of the COSMIC method

 The acid test. Do COSMIC sizes correlate with effort?

 Conclusions and future

10

© Charles Symons 2018

Method Goals

 A measure of functional requirements based on

fundamental software engineering principles

 Applicable to business, real-time and infrastructure

software

 Independent of technology or processes used for the

software or project

 (Hopefully) produces sizes that correlate well with effort

 Open, free
© Charles Symons 2018

All software functional requirements can be

broken down into ‘functional processes’

Functional

Requirements

Functional

Processes

Data

Manipulation

Data

Movement

Sub-processes

Theory:

Functional

Requirements

Functional

Processes

Data Movements

(account for

associated data

manipulation)

1

1

n

2 - n

In practice:

© Charles Symons 2018

There are four types of ‘Data Movement’

sub-processes

Software

being

measured

Boundary

Functional Users

• Hardware devices,

• Other software or

• Humans

Entries

Exits

Reads Writes

Persistent

storage

The ‘Data Movement’ is the unit of measure: 1 CFP (COSMIC Function Point)

© Charles Symons 2018

A Functional Process responds to an ‘Event’

that a ‘Functional User’ detects or generates

Triggering

Event

c
a
u
s
e
s
 a

Boundary

that is

moved into

a FP by its

‘Triggering

Entry’

Functional

Process

Functional

User

to
 g

e
n
e
ra

te
 a

Data

Group

New employee

starts work
Personnel

Officer

types

employee

details

Entry DM with

employee

details

Personnel

Officer

“I want to

enquire”

types

employee

ID/name

Entry DM with

employee

ID/name
© Charles Symons 2018

Some real-time examples

Triggering

Event

c
a
u
s
e
s
 a

Boundary

that is

moved into

a FP by its

Triggering

Entry

Functional

Process

Functional

User

to
 g

e
n
e
ra

te
 a

Data

Group

End of time

interval
Clock

Clock

tick

Entry DM of

tick (= ‘start

processing’)

Aircraft

radar

Missile

approaching

Message

‘Missile

approaching’

Entry DM with

radar info

© Charles Symons 2018

Definition of a Functional Process (abbrev.)

a) A set of data movements … of the functional requirements ….

being measured, …. that can be defined independently of any

other functional process in those requirements.

b) … Each functional process starts processing on receipt of a data

group moved by its Triggering Entry data movement.

c) The set of all data movements of a functional process is the set

that is needed to meet its requirements for all the possible

responses to its Triggering Entry.

© Charles Symons 2018

Some more definitions

A data movement (E, X, R or W) moves a single data group, where:

• A data group consists of one or more data attributes that describe a

single object of interest

• An object of interest is any ‘thing’ (physical or conceptual) in the world

of the functional user, about which the software being measured must

process or store/retrieve data

(Think of an entity-type, a relation in 3NF, or the subject of an object class)

© Charles Symons 2018

Example business application Functional

Processes

4 CFP 6 CFP 3 CFP

Enquire on

current salary

Update

salary

‘Maintain’ employee salary

Create

Employee

Empl.

detailsE

Empl.

details W

X
Error/Conf

. msg.

R
Empl.

ID

Empl. new

salary
E

Empl. new

salary

history

W

X
Error/Conf.

msg.

Empl. ID
E

Empl. details
X

X
Error/Conf.

msg.

Empl. details
R

Empl. Salary

History
R

Empl. Salary

History
X

© Charles Symons 2018

Example real-time Functional Processes

Simple

thermostat

Clock Tick
E

Actual Temp.
E

X to heater
On/Off

command

Target Temp.

4 CFP

E
E

Missile

detected

Complex

avionics
(Guess)

Multiple X’s
?

Sound alarm

Pilot info

Release chaff

Evasive action

Etc.

?

Many CFP
© Charles Symons 2018

There is no upper limit to the size of a

functional process

 A functional process must have at least 2 CFP
 A triggering Entry

 An ‘outcome’ – i.e. a Write or an Exit

 Largest reported functional processes?
 In banking ~ 65 CFP

 In avionics >100 CFP

 The smallest change to an existing functional
process is 1 CFP

© Charles Symons 2018

Measurement involves a three-phase process

Functional requirements

Measurement

Strategy

COSMIC Principles
Mapping

Requirements in the

form of the COSMIC

Model of the software

Measurement
Functional size

of the software

in units of CFP

Definitions:

Software to be measured

Required measurement

Measurement sponsor input

Functional Requirements

COSMIC Principles

© Charles Symons 2018

Measurement Strategy phase 1: define the

measurement parameters

Measurement

Sponsor

Measurement

Purpose

Functional

Requirements

Record

Strategy

parameters

Level of

Granularity of

the requts.

Software parameters

• Scope

• Functional users

• Layer(s)

• Level of Decomposition

Recommendation: define ‘patterns’ for standard M’ment Strategy parameter sets

© Charles Symons 2018

Mapping phase 2: map the requirements to

the COSMIC model

Functional

Requirements

Functional

Processes

Objects

of interest

Events (via

Functional

Users)

Data

Groups

Data

Movements

© Charles Symons 2018

Measurement phase 3: count the data

movements

Software

size

Sum of sizes of

Functional

Processes

Count of all their

Data Movements
= =

Size of a

change to

software

Count of

DM’s

added

Count of

DM’s

deleted

Count of

DM’s

modified

plus= plus

Within a defined Measurement Scope:

© Charles Symons 2018

An example result from a measurement

Acme Car Hire Functional

Procesess

C
u

st
o

m
er

 n
am

e

C
u

st
o

m
er

 M
as

te
r

R
ec

o
rd

C
u

st
o

m
er

 n
am

e

an
d

 a
d

d
re

ss

C
u

st
o

m
er

 ID

C
u

st
o

m
er

Su
m

m
ar

y
D

et
ai

ls

C
u

st
o

m
er

 D
et

ai
ls

C
u

st
o

m
er

 la
te

st

In
vo

ic
e

Ex
is

it
n

g
B

o
o

ki
n

gs

B
o

o
ki

n
g

D
et

ai
ls

Er
ro

r/
C

o
n

fi
rm

at
io

n

M
es

sa
ge

En
tr

ie
s

Ex
it

s

R
ea

d
s

W
ri

te
s

To
ta

l

Search Customer by name E R X X 1 2 1 4

View Customer Summary details R E X X 1 2 1 4

View Customer Details R E X 1 1 1 3

Update Customer details W E X 1 1 1 3

Add new Customer W E X 1 1 1 3

Print current Invoice R E R, X X 1 2 2 5

View Booking details E R, X X 1 2 1 4

7 11 6 2 26Totals for Acme System:

Data Group Names Nos. of Data Movements

© Charles Symons 2018

‘What about?’ Common objections to COSMIC

size measurement
26

Needs too much detail

for early estimating

Non-functional

requirements

Complexity

Re-used software

There are variants for approximate sizing

Distinguish sizes of new and re-used software

A COSMIC size closely measures the software

‘crude complexity’ of the functional requirements

at the level of granularity of the data movements

Quality NFR evolve wholly or partly into functional

requirements that COSMIC can measure.

Other NFR affect cost, effort but not software size

© Charles Symons 2018

In Agile processes, COSMIC sizes can be

measured at any level of aggregation

Hence usable for:

• early total System sizing

and effort estimation,

• User Story sizing and

estimation,

• progress control, etc.

Iteration

Release

System

User Story

(new &/or re-work)

© Charles Symons 2018

Agenda

 Goals: the importance of measuring software size

 Overview of the COSMIC method

 The acid test. Do COSMIC sizes correlate with effort?

 Conclusions and future

28

© Charles Symons 2018

Case 1: Renault Automotive use in

embedded software

Renault 1) uses CFP sizing to control the development and

enhancement of Electronic Control Units (ECU’s)

• tracks progress of ECU specification teams…

• who create designs in Matlab Simulink…

• which are automatically measured in CFP

Motivation for automation: speed, accuracy of measurement

29

© Charles Symons 2018

Renault achieves remarkable cost estimation

accuracy from its ECU designs

Cost vs size

(CFP)

Memory size vs

software size (CFP)

30

© Charles Symons 2018

Case 2: Web effort estimation is more

accurate with COSMIC than using ‘1G’ FPA

1000

500

0

-500

-1000

Work-hour

Residuals

CFP FP

Median

25 industrial Web applications 2)

Conclusions:

‘The results of the … study

revealed that COSMIC

outperformed Function Points as

indicator of development effort by

providing significantly better

estimations’

31

© Charles Symons 2018

Case 3: A Canadian supplier of security and

surveillance software systems

 A customer request for new or changed function is called
a ‘task’

 Scrum method used with iterations of 3 – 6 weeks

 Teams estimate tasks within each iteration in User Story
Points, and convert directly to effort in work-hours

 CFP sizes were measured on 24 tasks from nine
iterations, for which USP ‘sizes’, estimated and actual
effort data were available 3)

32

© Charles Symons 2018

User Story Point sizes are a poor predictor

of effort

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180 200

A
ct

ua
l

E
ff

or
t

(h
ou

rs
)

Estimated Effort (Hours)

Effort = 0.47 x Story Points + 17.6 hours and R2 = 0.33)

Notice the wide spread and the 17.6 hours ‘overhead’

33

© Charles Symons 2018

The CFP vs Effort graph showed a good fit,

but revealed two outliers

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80

A
ct

u
al

 E
ff

o
rt

 (
H

o
u

rs
)

Functional Size in CFP

Effort = 1.84 x CFP + 6.11 hours and R2 = 0.782

Two tasks with low effort/CFP had significant software re-use.

Removing these outliers improves the R2 to 0.977

34

© Charles Symons 2018

Case 4: A global automotive manufacturer

improved estimating for maintenance changes
35

 Context: real-time embedded software

 Starting point: text/diagrams for required

changes

 A COSMIC-based measurement program 4)

resulted in

 Estimating precision of 10 – 20% within

one year of starting

 More disciplined, repeatable processes,

internal benchmarks

 Greater customer/supplier trust

SW
change

requests

Effort
estimation

Bench-

marking

© Charles Symons 2018

Conclusions from case studies of size/effort

relationships
36

COSMIC-measured sizes correlate very well with effort

Investing in COSMIC measurement and recording cost

drivers should help improve:

 estimating accuracy

 organizational learning for process improvement

 quality control of requirements

Most accurate cost estimate → least cost project 5)

© Charles Symons 2018

Agenda

 Goals: the importance of measuring software size

 Overview of the COSMIC method

 The acid test. Do COSMIC sizes correlate with effort?

 Conclusions and future

37

© Charles Symons 2018

The COSMIC method has many advantages over

other methods of measuring software size

 Based on fundamental software engineering principles, hence:

 ‘future-proof’ (and stable)

 relatively easy to automate

 Applicable to business, real-time and infrastructure software, at

any level of decomposition

 ISO/IEC standard; endorsed by GAO 6), NIST 7), etc

 ‘Open’, freely available via www.cosmic-sizing.org 8)

38

© Charles Symons 2018

http://www.cosmic-sizing.org/

Estimating software processes can never be an

exact science – so iterate!
39

Software development is partly mechanical,

but partly creative and unpredictable

AGILE!

using a proper size scale – Story Points

COSMIC Function Points

Measure actual

performance and

‘cost-drivers’

Analyse and learn;

establish

benchmarks

Control

performance

against targets

Estimate and

budget future

activities

Data repository

Repeat the control cycle

frequently

© Charles Symons 2018

Thank you for your

attention

Charles Symons (www.cosmic-sizing.org)

cr.symons@btinternet.com

40

http://www.cosmic-sizing.org/
mailto:cr.Symons@btinternet.com

References

1. ‘Manage the automotive embedded software development cost & productivity with the automation of a

Functional Size Measurement Method (COSMIC)” Alexandre Oriou et al, IWSM 2014, Rotterdam,

www.ieeexplore.org

2. ‘Web Effort Estimation: Function Point Analysis vs. COSMIC’, Sergio Di Martino, Filomena Ferrucci,

Carmine Gravino, Federica Sarro, Information and Software Technology 72 (2016) 90–109

3. ‘Effort Estimation with Story Points and COSMIC Function Points - An Industry Case Study’, Christophe

Commeyne, Alain Abran, Rachida Djouab. ‘Software Measurement News’. Vol 21, No. 1, 2016.

Obtainable from www.cosmic-sizing.org

4. Private communication, Vector Consulting (Germany), 2016

5. ‘Cost Estimating and Assessment Guide: Best Practices for Developing and Managing Capital Program

Costs, Government Accountability Office (USA), 2011, http://www.gao.gov/new.items/d093sp.pdf

6. ‘A rational foundation for software metrology’, National Institute for Standards and Technology (USA),

NIST IR – 8101, https://doi.org/10.6028/NIST.IR.8101, 2016

7. ‘Introduction to the COSMIC method of measuring software’, v1.1, https://cosmic-

sizing.org/publications/introduction-to-the-cosmic-method-of-measuring-software-2/

41

© Charles Symons 2018

http://www.ieeexplore.org/
http://dx.doi.org/10.1016/j.infsof.2015.12.001
http://www.cosmic-sizing.org/
http://www.gao.gov/new.items/d093sp.pdf
https://doi.org/10.6028/NIST.IR.8101
https://cosmic-sizing.org/publications/introduction-to-the-cosmic-method-of-measuring-software-2/

