

THE COSMIC METHOD OF SOFTWARE SIZING AND ITS USES IN MANAGING AND ESTIMATING SOFTWARE ACTIVITIES

BCS Advanced Programming Group meeting 12th April 2018

Charles Symons

Goals: the importance of measuring software size

- Overview of the COSMIC method
- The acid test. Do COSMIC sizes correlate with effort?
- Conclusions and future

The goal: master the whole cycle of managing software processes

Few organizations really master the control cycle

- High proportions of software project failures and cost over-runs
- Who does best?
 - Commercial software suppliers a matter of survival
 - Agile method practitioners (maybe) but only at the team level

 Why the problems? Developing software is partly an <u>unpredictable</u> process

The performance of software processes has various aspects, and they are <u>tradeable</u>

Project achievement vs plan

 Actual vs. estimated: Effort, Duration, Size

Project speed

• Size / Duration

Project productivity

Size / Effort

Product quality

- Defect density (# Defects/Size)
- Functional (e.g. business needs)
- Technical (e.g. maintainability, response time, etc.)

... and the performance of on-going maintenance and enhancement

processes

Mastering the control cycle requires a sound method for measuring software size

Sizing method options:

Counts of Source Lines of Code: X Can't estimate until software designedX Technology-dependent, no standards

Development method specific, e.g. UCP, OOP, Story Points, etc.

X No reliable standards; benchmark data possible only locally

Functional size:

- International standard methods
- ✓ Technology-independent
- 'First Generation' methods have limitations

Simple example: using the control cycle data to estimate effort for a project, iteration, etc.

Completed projects:

'Typical' estimated effort

Measure productivity = $\frac{\text{Software size}}{\text{Project effort}}$

(Establish average 'benchmark' productivity for the type of project)

New project:

Estimated software size

Benchmark project productivity

'Best' estimated effort =
$$\left\{\frac{\text{Estimated software size}}{\text{Benchmark project productivity}}\right\} x$$

Adjustments for project-specific 'cost-drivers'

A huge number of possible cost-drivers can affect performance

Summary: there are inherent challenges to implement the software control cycle:

- The performance of software processes has multiple, tradeable aspects
- There are so many variables, it is *impossible* to build general, statistically-valid estimation models for more than a few of them
- Conclusions:
 - Collect your own size, effort, etc., data
 - Establish your own size/effort relationships

- Goals: the importance of measuring software size
- Overview of the COSMIC method
- The acid test. Do COSMIC sizes correlate with effort?
- Conclusions and future

- A measure of functional requirements based on fundamental software engineering principles
- Applicable to business, real-time and infrastructure software
- Independent of technology or processes used for the software or project
- (Hopefully) produces sizes that correlate well with effort
- Open, free

All software functional requirements can be broken down into 'functional processes'

There are four types of 'Data Movement' sub-processes

The 'Data Movement' is the unit of measure: 1 CFP (COSMIC Function Point)

A Functional Process responds to an 'Event' that a 'Functional User' detects or generates

Some real-time examples

Definition of a Functional Process (abbrev.)

- a) A set of data movements ... of the functional requirements being measured, that can be defined independently of any other functional process in those requirements.
- b) ... Each functional process starts processing on receipt of a data group moved by its Triggering Entry data movement.
- c) The set of all data movements of a functional process is the set that is needed to meet its requirements for all the possible responses to its Triggering Entry.

Some more definitions

A data movement (E, X, R or W) moves a single data group, where:

- A data group consists of one or more data attributes that describe a single object of interest
- An **object of interest** is any 'thing' (physical or conceptual) in the world of the **functional user**, about which the software being measured must process or store/retrieve data

(Think of an entity-type, a relation in 3NF, or the subject of an object class)

Example business application Functional Processes

4 CFP

6 CFP

3 CFP

Example real-time Functional Processes

There is no upper limit to the size of a functional process

- A functional process must have at least 2 CFP
 - A triggering Entry
 - An 'outcome' i.e. a Write or an Exit
- Largest reported functional processes?
 - In banking ~ 65 CFP
 - In avionics >100 CFP
- The smallest change to an existing functional process is 1 CFP

Measurement involves a three-phase process

Собміс

Measurement Strategy phase 1: define the measurement parameters

Recommendation: define 'patterns' for standard M'ment Strategy parameter sets

Mapping phase 2: map the requirements to the COSMIC model

Within a defined Measurement Scope:

Software size	=	Sum of siz Functio Proces	zes of mal ses	= Co Da	 Count of all the Data Movement 					
Size of a change to software	=	Count of DM's added	plus	Count of DM's modified	plus	Count of DM's deleted				

An example result from a measurement

	Data Group Names								Nos. of Data Movements						
Acme Car Hire Functional Procesess	Customer name	Customer Master Record	Customer name and address	Customer ID	Customer Summary Details	Customer Details	Customer latest Invoice	Exisitng Bookings	Booking Details	Error/Confirmation Message	Entries	Exits	Reads	Writes	Total
Search Customer by name	E	R	Х							х	1	2	1		4
View Customer Summary details		R		E	Х			Х			1	2	1		4
View Customer Details		R		E		х					1	1	1		3
Update Customer details		W		E						Х	1	1		1	3
Add new Customer		W				E				х	1	1		1	3
Print current Invoice		R		E				R, X		х	1	2	2		5
View Booking details				E					R, X	х	1	2	1		4
					Totals for Acme System:					7	11	6	2	26	

'What about?' Common objections to COSMIC size measurement

Needs too much detail for early estimating

Non-functional requirements

Complexity

Re-used software

There are variants for approximate sizing

Quality NFR evolve wholly or partly into functional requirements that COSMIC can measure. Other NFR affect cost, effort but not software size

A COSMIC size closely measures the software 'crude complexity' of the functional requirements at the level of granularity of the data movements

Distinguish sizes of new and re-used software

- Goals: the importance of measuring software size
- Overview of the COSMIC method
- The acid test. Do COSMIC sizes correlate with effort?
 - Conclusions and future

Case 1: Renault Automotive use in embedded software

Renault ¹⁾ uses CFP sizing to control the development and enhancement of Electronic Control Units (ECU's)

- tracks progress of ECU specification teams...
- who create designs in Matlab Simulink...

29

• which are automatically measured in CFP

Motivation for automation: speed, accuracy of measurement

Renault achieves remarkable cost estimation accuracy from its ECU designs

Case 2: Web effort estimation is more accurate with COSMIC than using '1G' FPA

25 industrial Web applications ²⁾

Conclusions: 'The results of the ... study revealed that COSMIC outperformed Function Points as indicator of development effort by providing significantly better estimations'

Case 3: A Canadian supplier of security and surveillance software systems

- A customer request for new or changed function is called a 'task'
- Scrum method used with iterations of 3 6 weeks

32

- Teams estimate tasks within each iteration in User Story Points, and convert directly to effort in work-hours
- CFP sizes were measured on 24 tasks from nine iterations, for which USP 'sizes', estimated and actual effort data were available ³⁾

User Story Point sizes are a poor predictor of effort

33

Notice the wide spread and the 17.6 hours 'overhead'

The CFP vs Effort graph showed a good fit, but revealed two outliers

34

Two tasks with low effort/CFP had significant software re-use. Removing these outliers improves the R² to 0.977

Case 4: A global automotive manufacturer improved estimating for maintenance changes

Context: real-time embedded software

35

- Starting point: text/diagrams for required changes
- A COSMIC-based measurement program⁴⁾ resulted in
 - Estimating precision of 10 20% within one year of starting
 - More disciplined, repeatable processes, internal benchmarks
 - Greater customer/supplier trust

Conclusions from case studies of size/effort **relationships**

COSMIC-measured sizes correlate very well with effort *Investing* in COSMIC measurement and recording cost drivers should help improve:

- estimating accuracy
- organizational learning for process improvement
- quality control of requirements

Most accurate cost estimate \rightarrow least cost project ⁵⁾

- Goals: the importance of measuring software size
- Overview of the COSMIC method
- The acid test. Do COSMIC sizes correlate with effort?
- Conclusions and future

The COSMIC method has many advantages over other methods of measuring software size

- Based on fundamental software engineering principles, hence:
 - 'future-proof' (and stable)

38

- relatively easy to automate
- Applicable to business, real-time and infrastructure software, at any level of decomposition
- ISO/IEC standard; endorsed by GAO⁶⁾, NIST⁷⁾, etc
- 'Open', freely available via <u>www.cosmic-sizing.org</u>⁸⁾

Estimating software processes can never be an exact science - so iterate!

Software development is partly mechanical, but partly creative and unpredictable

Repeat the control cycle frequently

AGILE!

using a proper size scale – Story Points COSMIC Function Points

Thank you for your attention

Charles Symons (<u>www.cosmic-sizing.org</u>) <u>cr.symons@btinternet.com</u>

- 1. 'Manage the automotive embedded software development cost & productivity with the automation of a Functional Size Measurement Method (COSMIC)" Alexandre Oriou et al, IWSM 2014, Rotterdam, <u>www.ieeexplore.org</u>
- 2. 'Web Effort Estimation: Function Point Analysis vs. COSMIC', Sergio Di Martino, Filomena Ferrucci, Carmine Gravino, Federica Sarro, Information and Software Technology 72 (2016) 90–109
- 3. 'Effort Estimation with Story Points and COSMIC Function Points An Industry Case Study', *Christophe Commeyne, Alain Abran, Rachida Djouab.* 'Software Measurement News'. Vol 21, No. 1, 2016. Obtainable from <u>www.cosmic-sizing.org</u>
- 4. Private communication, Vector Consulting (Germany), 2016
- 5. 'Cost Estimating and Assessment Guide: Best Practices for Developing and Managing Capital Program Costs, Government Accountability Office (USA), 2011, <u>http://www.gao.gov/new.items/d093sp.pdf</u>
- 6. 'A rational foundation for software metrology', National Institute for Standards and Technology (USA), NIST IR 8101, <u>https://doi.org/10.6028/NIST.IR.8101</u>, 2016
- 7. 'Introduction to the COSMIC method of measuring software', v1.1, <u>https://cosmic-sizing.org/publications/introduction-to-the-cosmic-method-of-measuring-software-2/</u>