High-level
development and debugging
of
FPGA-based network programs

hik.sultana@cl.cam.ac.uk

Pietro Bressana, Richard Clegg, Paolo Costa, Jon Crowcroft,
Salvator Galea, David Greaves, Luo Mai, Andrew W Moore,

Richard Mortier, Peter Pietzuch, Jonny Shipton, Robert Soule,
Nik Sultana, Marcin Wojcik, Noa Zilberman

O
D
4—
-
-
=
—
)
-
C

Fleld-programmable
gate arrays

L ITITIIIE %% W W9 B9 W P W = W e L1

r .
3 (W NN WEW W ;u.lt.t
b

P

[

i

|
'yi'. 1
e <1
» -
. ’p
M WS T
= J =
M. »
9 :
o S a
B]
i & 1|
ol AN
-
N
B

e ®

. 3 . 3 : . b Ty L 3 5 : 3 ar
| : 0l el |

O B ® PR Lol

X|I|n>< XCZO64 FPGA

64 CLB x (2 3-LUTs + FF)
(c) Xilinx

1T 07 1

Logic Block

11

D 11 1 il ‘

= = :*'_': == | 0 _ intercomection
E I I l[[. ﬁ/

1 il H
00— L o W e H S, - Input/Output
= [B AL g
[j:[‘_' [2 Switch Box

B = & Connect Biock
O— [&
= Lk
E -

IT 1L 11

4

http://ca.olin.edu/2005/fpga_dsp/fpga.html

P

ﬂaﬂiﬁ

18
$h7<;

Logic Blocks

LL

'
.)
«” -
- - ’
’ . .
: -
. . :
.
.' X -
N '
’)
L
v 5
.
‘ .
o
¥

1’0 Blocks

mYnlnlntn——
S
L
| I 3
||
| ! ’q

'
}
0 [[

11
2
1
HLE
. L
11

Programmakie
Routing

http://zone.ni.com/reference/en-XX/help/371599J-01/Ivipgaconcepts/fpga_basic_chip_terms/

e FPGAs becoming more powerful and prevalent.
Most recently in datacentres.

O e.qg., Azure, Baidu, Amazon.

e FPGAs becoming more powerful and prevalent.
Most recently in datacentres.

e But still difficult to program and debug!
To both hardware and non-hardware people.

Both technical and non-technical difficulties.

OHardware programming unlike software programming.
O Generating a bitstream is a lengthy process.

O Differing interpretations for standard HDLSs.
O Quality of the tools is less polished than for software.
O Strong vendor bias, closed formats, hold things back.

e FPGAs becoming more powerful and prevalent.
Most recently in datacentres.
e But still difficult to program and debug!
To both hardware and non-hardware people.
Both technical and non-technical difficulties.
e 30+ years of research into using high-level languages
for circuit description. 20+ years commercial tooling

(Synopsys Behavoural Compiler in 1994)

e FPGAs becoming more powerful and prevalent.
Most recently in datacentres.

e But still difficult to program and debug!

To both hardware and non-hardware people.
Both technical and non-technical difficulties.

e 30+ years of research into using high-level languages
for circuit description. 20+ years commercial tooling
(Synopsys Behavoural Compiler in 1994)

e Experience has been mixed — you can't be

everything to everybody! But lots of progress.

High-level
development and debugging
of
FPGA-based network programs

High-level
development and debugging
of
FPGA-based network programs

Gates (+ Interconnections)

Logic Block

Interconnection

Input/Output

Switch Box
Connect Biock

IT T7 TT 7

Hardware Description Language

* (e.q., Verilog)

\ 4

I 11 71 11

T7 77 77 77

General Purpose Language
(High-Level Synthesis)

nt” (e.g., C)
Hardware Description Language
* (e.q., Verilog)

\ 4

IT TT TT I

S
AW Y R \
M\@%\#&‘@
O v - 5 r~
83 5 &8 o

Domain Specific Language

(€.9., PP, PX, P4) General Purpose Language

(High-Level Synthesis)

nt” (e.g., C)
Hardware Description Language
* (e.q., Verilog)

\ 4

Interconnection

L J]]
'i-' HTH HIH
T\ RS
a8 WY q8 RO
O »w 5 1 e
S & B 4
g2 D o

IT TT TT I

Domain Specific Language

(€.9., PP, PX, P4) General Purpose Language

(High-Level Synthesis)

vt (e.g. C)
Hardware Description Language
* (e.q., Verilog)

\ 4

lllllllllllll

L.«]]
‘I H_l =l
M\@Q&E\ @;@ A\ééﬂ%\
523 3 §
22 5 o

I1 17 17 11

Hardware Description
| anguage
* Lots of flexibility.
 How you think code will behave
vs how it's translated
vs how it executes/implements.
* ‘reg” ~ register

e “Iinference’”

* “technology mapping”

struct node {
unsigned 1nt prev node : IDX WIDTH;
unsigned 1nt next node : IDX WIDTH;
unsigned 1nt data : DATA WIDTH;

J

struct node memory [MAX DEPTH IDX+1l];

‘define DATA F LSB 0
‘define DATA F MSB ('DATA F LSB + DATA WIDTH - 1)
‘define DATA F WORD ‘DATA F MSB: DATA F LSB

‘define NEXT NODE F LSB ('DATA F MSB + 1)
‘define NEXT NODE F MSB (NEXT NODE F LSB + IDX WIDTH - 1)
‘define NEXT NODE F WORD 'NEXT NODE F MSB: NEXT NODE F LSB

‘define PREV NODE F LSB (NEXT NODE F MSB + 1)
‘define PREV NODE F MSB (PREV NODE F LSB + IDX WIDTH - 1)
‘define PREV NODE F WORD 'PREV NODE F MSB: PREV NODE F LSB

reg [PREV _NODE F MSB: DATA F LSB] memory [MAX DEPTH IDX:0];

Domain Specific Language

(€.9., PP, PX, P4) General Purpose Language

(High-Level Synthesis)

nt” (e.g., C)

Hardware Description Language

* (e.q., Verilog)

\ 4

I 11 71 11

Domain-Specitic Language

* Much less flexibility. Must stay within “"domain”.

* Can achieve good performance and more
development support (e.g., richer types), and
shorter cycles of development.

* Tuning can be tricky — e.g., breakout to HDL.

Domain Specific Language
(e.q., PP, PX, P4)

General Purpose Language
(High-Level Synthesis)

nt” (e.g., C)

Hardware Description Language

* (e.q., Verilog)

\ 4

I 11 71 11

High-Level Synthesis

Use “familiar” language.

Usually not the full language. e.g., dynamic
allocation only partly supported.

Often involves library support and language
extensions.

Tuning can be tricky — e.g., breakout to HDL.

(some expression)

(some expression)

(some expression)

(some expression)

A: X = (some expression)
C: £ (x)

B: vy = (some expression)

(some expression)

(some expression)

(some expression)

(v.cplx expression)

B.1

B.2

(some expression)

(some expression)

B.1

B.2

(some expression)

(some expression)

B.2

B.1

(some expression)

(some expression)

he user can control how aggressively
Stratus HLS packs these operations into each
clock period. Creating designs with Stratus
HLS can save months of backend effort by
preventing timing closure problems.”

cadence

https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/digital-design-signoff/stratus-ds.pdf

(Goal

High-level
development and debugging
of
FPGA-based network programs

...using HLS

't won't work. ..

't won't work. ..

e Performance will suck!
Use HDL modules from HLL for resource-related IP.

't won't work. ..

e Performance will suck!
Use HDL modules from HLL for resource-related IP.

* HLS tools are expensive and closed-source.
Various academic tools exist.

't won't work. ..

e Performance will suck!
Use HDL modules from HLL for resource-related IP.

* HLS tools are expensive and closed-source.
Various academic tools exist.

* Not sufficiently expressive.
Can be fixed. (With ingenuity.)

't won't work. ..

Performance will suck!
Use HDL modules from HLL for resource-related IP.

HLS tools are expensive and closed-source.
Various academic tools exist.

Not sufficiently expressive.
Can be fixed. (With ingenuity.)

How to run this in software?
Create emulation environment + shadow library.

concerns

* Providing benetits for hardware people:
improved time-to-market, prototyping, development
support, debugging, can breakout to HDL.

concerns

* Providing benetits for hardware people:
improved time-to-market, prototyping, development
support, debugging, can breakout to HDL.

* Providing benefits for non-hardware people:
through less steep learning curve, software-like
development mindset.

concerns

* Providing benetits for hardware people:
improved time-to-market, prototyping, development
support, debugging, can breakout to HDL.

* Providing benefits for non-hardware people:
through less steep learning curve, software-like
development mindset.

 Comparable or better performance (latency
+throughput) or resource utilisation to hand-
written HDL.

Our system: Emu

(High-level)

Software Hardware
description description
of network of network

program program

(1) HLS

(High-level) |
Software Hardware
description description
C# Verilog

http:/www.cl.cam.ac.uk/~djg11/kiwi/

public class Data {
public bool matched = false;
public ulong result = 0;

}

public class LRU
{

public static Data Lookup(ulong key_in)
{
Data res = new Data();
ulong 1dx = HashCAM.Read(key_1in);
1f (HashCAM.matched) {
res.matched = HashCAM.matched;
res.result = NaughtyQ.Read(idx);
NaughtyQ.BackOfQ(idx);
}

return res;

}

public static void Cache(ulong key_in, ulong value_in)
{
ulong idx = NaughtyQ.Enlist(value_in);
HashCAM.Write(key_in, 1idx);
}
}

(2) Library support

(High-level)
Software Hardware
description description
C# Verilog

+ libraries + libraries

(High-level)
Software
description

(3) Host environment
of network

Hardware
description
program

C# Verilog
+ libraries + libraries

m

http://github.com/niksu/Pax

A

private ForwardingDecision OutsideToInside(TEncapsulation packet)

{
// Retrieve the mapping. If a mapping doesn't exist, then it means that we're not
// aware of a session to which the packet belongs: so drop the packet.
var key = new ConnectionKey(packet.GetSourceNode(), packet.GetDestinationNode());
NatConnection<TPacket, TNode> connection;
if (NAT_MapToInside.TryGetValue(key, out connection))
{

var destination = connection.InsideNode;

// Update any connection state, including resetting the inactivity timer
connection.ReceivedPacket(packet, packetFromInside: false);

// Rewrite the packet destination
packet.SetDestination(destination);

// Update checksums
packet.UpdateChecksums();

// Forward on the mapped network port
return new ForwardingDecision.SinglePortForward(destination.InterfaceNumber);

}

else

{
return Drop;
}
}

(3) Hardware envir.

(High-level)

Software Hardware
description description
of network of network

program program

C# Verilog

+ libraries + libraries

e
m‘ SNelFPGEH
http:/netfpga.org/

10G Port

10G Port

10G Port

10G Port

N Y

Input
Arbiter

10G Port

» Main Logical Core »

PCle & DMA

Output
Queues

10G Port

10G Port

10G Port

PCle & DMA

Lifting & shadowing

C# Verilog
+ libraries + libraries .

[Kiwi.OutputBitPort("NQ_enable")]
protected static bool enable;
[Kiwi.InputBitPort("NQ_ready")]
protected static bool ready;
[Kiwi.InputBitPort("NQ_crashed")]
protected static bool crashed,;

[Kiwi.OutputWordPort(3, @, "NQ_command")]
protected static byte command;

[Kiwi.InputWordPort(3, @, "NQ_idx_out")]
protected static ulong idx_out;
[Kiwi.InputWordPort(7, @, "NQ_data_out")]
protected static ulong data_out;

[Kiwi.OutputWordPort(3, @, "NQ_idx_in")]
protected static ulong idx_in;
[Kiwi.OutputWordPort(7, @, "NQ_data_in")]
protected static ulong data_in;

// Nonvolatile copies of outputs.
public static ulong idx_out_nv;
public static ulong data_out_nv;

public static ulong Enlist(ulong data_in)
{
while (ready) { Kiwi.Pause(); }
command = (byte)op_code.Enlist;
NaughtyQ.data_in = data_in;
enable = true;
Kiwi.Pause();
while (!ready) { Kiwi.Pause(); }
Kiwi.Pause();
idx_out_nv = idx_out;
data_out_nv = data_out;
enable = false;
Kiwi.Pause();
return idx_out_nv;

[Kiwi.OutputBitPort("NQ_enable")]
protected static bool enable;
Kiwi.InputBitPort("NQ_ready")]
protected static bool ready;
Kiwi.InputBitPort("NQ_crashed")]
protected static bool crashed;

[Kiwi.OutputWordPort(3, @, "NQ_command")]
protected static byte command;

Kiwi.InputWordPort(3, @, "NQ_idx_out")]
protected static ulong idx_out;
Kiwi.InputWordPort(7, @, "NQ_data_out")]
protected static ulong data_out;

[Kiwi.OutputWordPort(3, @, "NQ_idx_in")]
protected static ulong idx_in;
[Kiwi.OutputWordPort(7, @, "NQ_data_in")]
protected static ulong data_in;

// Nonvolatile copies of outputs.
public static ulong idx_out_nv;
public static ulong data_out_nv;

public static ulong Enlist(ulong data_in)
{
while (ready) { Kiwi.Pause(); }
command = (byte)op_code.Enlist;
NaughtyQ.data_in = data_in;
enable = true;
Kiwl.Pause();
while (!ready) { Kiwi.Pause(); }
Kiwl.Pause();
1dx_out_nv = idx_out;
data_out_nv = data_out;
enable = false;
Kiwi.Pause();
return idx_out_nv;

public static ulong Enlist(ulong data_in)
{
while (ready) { Kiwi.Pause(); }
command = (byte)op_code.Enlist;
NaughtyQ.data_in = data_in;
enable = true;
Kiwi.Pause();
while (!ready) { Kiwi.Pause(); }
Kiwi.Pause();
1dx_out_nv = idx_out;
data_out_nv = data_out;
enable = false;
Kiwi.Pause();
return idx_out_nv;

public static ulong Enlist(ulong data_in)
{
while (ready) { Kiwi.Pause(); }
command = (byte)op_code.Enlist;
NaughtyQ.data_in = data_in;
enable = true;
Kiwi.Pause();
while (!ready) { Kiwi.Pause(); }
Kiwi.Pause();
1dx_out_nv = idx_out;
data_out_nv = data_out;
enable = false;
Kiwi.Pause();
return idx_out_nv;

public static ulong Enlist(ulong data_in)
{
while (ready) { Kiwi.Pause(); }
command = (byte)op_code.Enlist;
NaughtyQ.data_in = data_in;
enable = true;
Kiwi.Pause();
while (!ready) { Kiwi.Pause(); }
Kiwi.Pause();
1dx_out_nv = idx_out;
data_out_nv = data_out;
enable = false;
Kiwi.Pause();
return idx_out_nv;

Signals
Time
clk=0
command[3:0] =1
crashed =0
data_in[7:0] =02
data_out[7:0] =00
enable =1
1dx =00000010 00000010
1dx_1n[3:0] =x
1dx_out[3:0] =0
ready =0
reset =0

Signals Waves

Time
clk =0
command[3:0] =1
crashed =0
data_in[7:0] =02
data_out[7:0] =00
enable =1
1dx =00000010
1dx_1n[3:0] =x
1dx_out[3:0] =0
ready =0
reset =0

Signals Waves

Time
clk=0
command[3:0] =1
crashed =0
data_in[7:0] =02
data_out[7:0] =00
enable =1
1dx =00000010
1dx_1n[3:0] =x
1dx_out([3:0] =0
ready =0
reset =0

Signals Waves
Time

clk=0
command[3:0] =1
crashed =0
data_in[7:0] =02
data_out[7:0] =00
enable =1
1dx =00000010
1dx_1n[3:0] =x
1dx_out[3:0] =0
ready =0
reset =0

Signals Waves

Time
clk=0
command[3:0] =1
crashed =0
data_in[7:0] =02
data_out[7:0] =00
enable =1
1dx =00000010
1dx_1n[3:0] =x
1dx_out([3:0] =0
ready =0
reset =0

Dataplane

Packet
processing
logic

Workflow

HDL-based development and integration stages

Packet processor
modelled in Verilog F

Embedding in
dataplane

Design is tested using a
testbench that simulates
the hardware being fed a set [
of packets, and checking
the packets that result.

Embedding in
rest of pipeline

The design is ultimately
processed by FPGA
vendor-specific tools to
generate an image that
programs the FPGA.
Packets received on
physical network ports
are processed using our
logic.

Packet processor n n
modelled in C# [: » d|
N N

O (©)
X
;\\'OQ) //\\\ /r\ é /GZ}'
’go'.o / ; < J?‘ o
Q § / N N\ @ O
N / 4 \ N (&) 2‘
oé\A@ / // N AN OO’O
o / y S SR

.NET bytecode can
be executed in .NET
VM on various OSs,
and debugged using
existing tools.

Layers of abstraction
between the .NET VM
and the OS-provided
virtual or physical
network interfaces.

Virtualisation of
interfaces enables us
to use the packet
processor inside a
network simulator.

Network-scale testing
can be done cheaply
and easily within a
single machine.

Some examples

Learning switch

ICMP echo and TCP ping
DNS

Memcachead

NAT

Some results

Platform Reference Switch Emu Switch
Logic Utilisation 11.42% 12.9 %
Memory Utilisation 13.23% 13.5%
Bandwidth 32Gbps 32.7Gbps

Port-to-port Latency 823ns 8235ns

67

CDF -- Prob(jitter < x)

NDS (DAG)
Emu (DAG) —--—-- -
NDS (System) ----------
Emu (System) - - - -

l |

100 150
RTT [us]

(a) DNS Hit - CDF of Query Latency

200

Latency[us]

= N W B WU
o O o o O O

aVaVav V. W A

KRR 3

l I !

Memcached (DAG)

| l
Emu (DAG) s

Emu (Syste m) KRBEBEEKKS

Memcached (System)
i

27

(a) Memcached - Latency

KOps/Second

120
100

Q0
-

S O
o O

N
-

-

l | l l l
Emu

Memcached

(b) Memcached - Throughput

High-level
development and debugging
of
FPGA-based network programs

"Program-hosted
Directability” (PhD)

Program direction

PhD: transforming programs to host their own
directability features.

“direction feature” becomes a program in
constrained language.

Can invoke/reconfigure these features at runtime.

Original program behaviour

(Normal interaction
with external world)

Program |

Hosted directability

Director

trace V max_ trace idx

trace V max_ trace idx

N++;
‘ 1f V trace 1dx < max trace 1dx then

V_trace buf [V trace 1idx] := V;
inc V trace 1dx;
continue

else

inc V trace overflow;
break

Program memory

Location code

Controller’s
memory

Original program behaviour

(Normal interaction
with external world)

Program |

Hosted directability

Director

Program memory

Controller’s
memory

Location code

&

~
‘ if V _trace i1dx < max trace idx then
V_trace buf [V trace 1idx] := V;

U inc V_trace 1dx;
else

inc V_trace overflow;
break

Command Behaviour

print X Print the value of variable X from the source program.
break L (B) Activate a (conditional) breakpoint at the position of label L.
unbreak L Deactivate a breakpoint.
backtrace (§) Print the “function call stack”.
watch X (B) Break when X is updated and satisfies a given condition.
unwatch X Cancel the effect of the “watch” command.
[reads X (B) ($)
count ¢ writes X (B) ($) Count the reads or writes to a variable X, or the calls to a function fname.
calls fname (B) ($)
> start X (B) ($) Trace a variable, subject to a condition being satisfied, and up to trace some length.
stop X Stop tracing a variable.
trace { clear X Clear a variable’s trace buffer.
print X Print the contents of a variable’s trace buffer.
_ full X Check if a variable’s trace buffer is full.

Table 2. Directing commands making up language ©. Note that count has similar subcommands to those of trace, to clear
the counters, get their current value, and find out if a maximum value has been reached.

: Emu research !
contribution

C#—!

Direction-
Augmented
C# code

\l
)

code ! !
S | |
359 '

5'8 = ' |

Q39 ! !
SO0 ' Y ks

= o By default, debugging can be §

NET done interactively using £

. software debugger, which is one §

CIL of the tools of the trade of any &

software programmer. 4

"""""" | _

@ In HDL form, the program can §

be tested using simulation tools §

Verilog provided for the HDL. By §

default, debugging involves %

iteratively rerunning simulations ¥

after running tests in batch. ¥

a QYour HDL module can be §¥

s 2 QI) included in larger infrastructure &

S33 modules, to yield more %

E—,"g 5 accurate simulation results, at §

= ® @ the expense of longer £

simulation times.

Q By default, debugging hardware
is similar to the simulation
phase. The output of results is

Bitstreamm usually further restricted in &

hardware, due to the absence
of a console.

"2oejI9)ul bunoalip-weaboud paijiun @

Artefact Utilisation (%) Performance
Duration Latency Queries-

Logic Flip-flops (4cycles) (us) per-sec

(KQPS)
DNS+ELA 99.74 100.40 57 1.83 1176
DNS+2e 234.61 151.06 57 1.86 1176
(Count) 23446 151.81 62 1.94 1064
(Trace) 218.30 151.84 70 1.99 1010

Table 4. Utilisation and performance profile of the
DNS+ELA against the DNS having one extension point,
where the extension point 1s NOP, packet counting, or vari-
able tracing. Latency is indicated at the 99" percentile.

L -
2 3 8
o -~ .54%0 S ED E g %l
g £ £ ¥ 3 EEEREEEE
I g EESE E£5%5§32EE=z 984
s Z 2B SR 2T EE 8T zs EE S
= 3 8 8 £ ¥ & g B E 20 g z E 5 3 2 3
= = O P» = = o
System % 5 9 ©§ B % & & & E £ % B8 2 % 5
(Sosi& 1992) Dynascope v v Vv Vv V V V V Y v v IR
(Goeders and Wilton 2014) HLS-Scope v vV v Y v v || C S
(Calagar et al. 2014) Inspect v v v v v || C H
(Panjkov et al. 2015) Vv v || C S
(Hung and Wilton 2014) QuickTrace v v v v Vv I||N v H
(Koch et al. 1998) SLE/CADDY Vv v v v v || C H
(Monson and Hutchings 2015) vV v || C S
(Curreri et al. 2011) B v v v || C H
(Cameraetal. 2005) BORPH v v V v v v C H
(see §25)PhD v v v v v v Y v v IR c B

Table 1. Survey of features provided by debugging systems. Blacked-out boxes mean “not applicable”.

Conclusion

 Goal: HLS-based development of network programs

Conclusion

 Goal: HLS-based development of network programs

* Currently: done using HDL or DSL. We use HLS.

Conclusion

 Goal: HLS-based development of network programs
* Currently: done using HDL or DSL. We use HLS.

 What’s new: lifting+shadowing, host support
environment, Improved debugging support.

Conclusion

Goal: HLS-based development of network programs
Currently: done using HDL or DSL. We use HLS.

What’s new: lifting+shadowing, host support
environment, Improved debugging support.

Relevance: will help experienced and novice users of
FPGASs, at a time when FPGAs becoming more prevalent.

I'hank you

naas-project.org

http://naas-project.org

Extra slides

Ihree examples:

* print
* pbreak

e unbreak

(break L (B)) e € X € Var,

(break L (B)) c€ X € Var,

print X
P Le P (need differentiating criteria)

conditional (B) t =
t
if [{ == I, then't

else continue

[break L (B)] ¢p = conditional (B) break

conditional (B) t =
t if (B) =t
if [== I, thent 1if(B)=(I1=

else continue

[break L (B)] ¢p = conditional (B) break
[break L (B)]| = QL : {[break L (B)]¢p}

conditional (B) t =
t if (B) = true
if [== I, thent if(B)= (11 = 1)

else continue

Le¢p p<pp

break L (B)
p L¢ p

/

[break L (B)] ¢p = conditional (B) break
[break L (B)]| = QL : {[break L (B)]¢p}

conditional (B) t =
t if (B)
if [== I, thent if (B)

else continue

true
(I = 1)

Le¢p p<pp

D = {(«bp», L, 1)}

break L (B) ,
p L¢ p

[break L (B)] ¢p = conditional (B) break
[break L (B)]| = QL : {[break L (B)]¢p}

conditional (B) t =
t if (B) = true
if [== I, thent if(B)= (11 = 1)

else continue

Le¢p p<pp

D = {(«bp», L, 1)}

C = {SP[L ~ [break L (B)]sp]}
break L (B) ,
P L¢ p

[break L (B)] ¢p = conditional (B) break
[break L (B)]| = QL : {[break L (B)]¢p}

conditional (B) t =
t if (B) = true
if [== I, thent if(B)= (11 = 1)

else continue

Le¢p p<pp

D = {(«bp», L, 1)}
C = {SP[L + [break L (B)]p|}
break L (B) | D, = \D'. if («bp»,L,1) € D’ then D’
P —¢ P else
[break L (B)] ~ "L™;
(«bp», L,0 — 1) :€ D’

where

[break L (B)] ¢p = conditional (B) break
[break L (B)]| = QL : {[break L (B)]¢p}

conditional (B) t =
t if (B) = true
if [== I, thent if(B)= (11 = 1)

else continue

(break L (B)) € €

unbr_eak L
P ¢ P

(break L (B)) € €

unbr_eak L
P ¢ P

lunbreak L] = QL : {continue}

(break L (B)) € €

B={)
unbreak L C = {}
p LCe P D, = A\D'. if («bp», L,0) € D' then D’
else [unbreak L] ~» "L™;
(«bp», L,1 +— 0) :€ D’

where

lunbreak L] = QL : {continue}

