
High-level
development and debugging

of
FPGA-based network programs

Pietro Bressana, Richard Clegg, Paolo Costa, Jon Crowcroft,
Salvator Galea, David Greaves, Luo Mai, Andrew W Moore,

Richard Mortier, Peter Pietzuch, Jonny Shipton, Robert Soule, 
Nik Sultana, Marcin Wojcik, Noa Zilberman

nik.sultana@cl.cam.ac.uk

Intel Lynnfield  
(c) Intel

Field-programmable
gate arrays

Xilinx XC2064 FPGA
64 CLB x (2 3-LUTs + FF)  

(c) Xilinx

http://ca.olin.edu/2005/fpga_dsp/fpga.html

http://zone.ni.com/reference/en-XX/help/371599J-01/lvfpgaconcepts/fpga_basic_chip_terms/

• FPGAs becoming more powerful and prevalent. 
 Most recently in datacentres.

• But still difficult to program and debug!  
 To both hardware and non-hardware people.  
 Both technical and non-technical difficulties.

• 30+ years of research into using high-level languages  
 for circuit description. First commercial tool in 1994  
 (Synopsys Behavioural Compiler)

• But experienced has been mixed.  
 You can’t be everything to everybody!

e.g., Azure, Baidu, Amazon.

• FPGAs becoming more powerful and prevalent. 
 Most recently in datacentres.

• But still difficult to program and debug!  
 To both hardware and non-hardware people.  
 Both technical and non-technical difficulties.

• “High-level synthesis” still far from standard.  
 You can’t be everything to everybody!  
 Even standard languages are hard to standardise.

• Architectures less well documented than more  
 mainstream chips.

Hardware programming unlike software programming.
Generating a bitstream is a lengthy process.

Differing interpretations for standard HDLs.
Quality of the tools is less polished than for software.
Strong vendor bias, closed formats, hold things back.

• FPGAs becoming more powerful and prevalent. 
 Most recently in datacentres.

• But still difficult to program and debug!  
 To both hardware and non-hardware people.  
 Both technical and non-technical difficulties.

• 30+ years of research into using high-level languages  
 for circuit description. 20+ years commercial tooling  
 (Synopsys Behavoural Compiler in 1994)

• But experienced has been mixed.  
 You can’t be everything to everybody!

• FPGAs becoming more powerful and prevalent. 
 Most recently in datacentres.

• But still difficult to program and debug!  
 To both hardware and non-hardware people.  
 Both technical and non-technical difficulties.

• 30+ years of research into using high-level languages  
 for circuit description. 20+ years commercial tooling  
 (Synopsys Behavoural Compiler in 1994)

• Experience has been mixed — you can’t be  
 everything to everybody! But lots of progress.

High-level
development and debugging

of
FPGA-based network programs

High-level
development and debugging

of
FPGA-based network programs

Gates (+ Interconnections)

Gates (+ Interconnections)

Hardware Description Language
(e.g., Verilog)

Gates (+ Interconnections)

Hardware Description Language

General Purpose Language
(High-Level Synthesis)

(e.g., Verilog)

(e.g., C)

Gates (+ Interconnections)

Hardware Description Language

Domain Specific Language
General Purpose Language
(High-Level Synthesis)

(e.g., Verilog)

(e.g., C)

(e.g., PP, PX, P4)

Gates (+ Interconnections)

Hardware Description Language

Domain Specific Language
General Purpose Language
(High-Level Synthesis)

(e.g., Verilog)

(e.g., C)

(e.g., PP, PX, P4)

Hardware Description
Language

• Lots of flexibility.

• How you think code will behave  
vs how it’s translated 
vs how it executes/implements.

• “reg” ~ register

• “inference”

• “technology mapping”

struct node {
 unsigned int prev_node : IDX_WIDTH;
 unsigned int next_node : IDX_WIDTH;
 unsigned int data : DATA_WIDTH;
}

struct node memory [MAX_DEPTH_IDX+1];

`define DATA_F_LSB 0
`define DATA_F_MSB (`DATA_F_LSB + DATA_WIDTH - 1)
`define DATA_F_WORD `DATA_F_MSB:`DATA_F_LSB

`define NEXT_NODE_F_LSB (`DATA_F_MSB + 1)
`define NEXT_NODE_F_MSB (`NEXT_NODE_F_LSB + IDX_WIDTH - 1)
`define NEXT_NODE_F_WORD `NEXT_NODE_F_MSB:`NEXT_NODE_F_LSB

`define PREV_NODE_F_LSB (`NEXT_NODE_F_MSB + 1)
`define PREV_NODE_F_MSB (`PREV_NODE_F_LSB + IDX_WIDTH - 1)
`define PREV_NODE_F_WORD `PREV_NODE_F_MSB:`PREV_NODE_F_LSB

reg [`PREV_NODE_F_MSB:`DATA_F_LSB] memory [MAX_DEPTH_IDX:0];

Gates (+ Interconnections)

Hardware Description Language

Domain Specific Language
General Purpose Language
(High-Level Synthesis)

(e.g., Verilog)

(e.g., C)

(e.g., PP, PX, P4)

Domain-Specific Language

• Much less flexibility. Must stay within “domain”.

• Can achieve good performance and more
development support (e.g., richer types), and
shorter cycles of development.

• Tuning can be tricky — e.g., breakout to HDL.

Gates (+ Interconnections)

Hardware Description Language

Domain Specific Language
General Purpose Language
(High-Level Synthesis)

(e.g., Verilog)

(e.g., C)

(e.g., PP, PX, P4)

High-Level Synthesis
• Use “familiar” language.

• Usually not the full language. e.g., dynamic
allocation only partly supported.

• Often involves library support and language
extensions.

• Tuning can be tricky — e.g., breakout to HDL.

…
A: x = (some expression)
B: y = (some expression)
…

…
A: x = (some expression)
B: y = (some expression)
…

A

B

…
A: x = (some expression)
C: f(x)
B: y = (some expression)
…

A

B

C

…
A: x = (some expression)
C: f(x)
B: y = (some expression)
…

A C B

…
A: x = (some expression)
B: y = (v.cplx expression)
…

A

B

…
A: x = (some expression)
B: y = (some expression)
…

A

B.1

B.2

…
A: x = (some expression)
B: y = (some expression)
…

A

B.1

B.2

…
A: x = (some expression)
B: y = (some expression)
…

B.2

B.1

A

“The user can control how aggressively
Stratus HLS packs these operations into each
clock period. Creating designs with Stratus
HLS can save months of backend effort by
preventing timing closure problems.”

https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/digital-design-signoff/stratus-ds.pdf

High-level
development and debugging

of
FPGA-based network programs

…using HLS

Goal

It won’t work…
• Performance will suck!  

Use HDL modules from HLL for resource-related IP.

• HLS tools are expensive and closed-source.  
Various academic tools exist.

• Not sufficiently expressive.  
Can be fixed. (With ingenuity.)

• How to run this in software?  
Create emulation environment.

It won’t work…
• Performance will suck! 

Use HDL modules from HLL for resource-related IP.

• HLS tools are expensive and closed-source.  
Various academic tools exist.

• Not sufficiently expressive.  
Can be fixed. (With ingenuity.)

• How to run this in software?  
Create emulation environment.

It won’t work…
• Performance will suck! 

Use HDL modules from HLL for resource-related IP.

• HLS tools are expensive and closed-source. 
Various academic tools exist.

• Not sufficiently expressive.  
Can be fixed. (With ingenuity.)

• How to run this in software?  
Create emulation environment.

It won’t work…
• Performance will suck! 

Use HDL modules from HLL for resource-related IP.

• HLS tools are expensive and closed-source. 
Various academic tools exist.

• Not sufficiently expressive. 
Can be fixed. (With ingenuity.)

• How to run this in software?  
Create emulation environment.

It won’t work…
• Performance will suck! 

Use HDL modules from HLL for resource-related IP.

• HLS tools are expensive and closed-source. 
Various academic tools exist.

• Not sufficiently expressive. 
Can be fixed. (With ingenuity.)

• How to run this in software?  
Create emulation environment + shadow library.

Concerns
• Providing benefits for hardware people: 

improved time-to-market, prototyping, development
support, debugging, can breakout to HDL.

• Providing benefits for non-hardware people: 
through less steep learning curve, software-like
development mindset.

• Comparable or better performance (latency
+throughput) or resource utilisation to hand-
written HDL.

Concerns
• Providing benefits for hardware people: 

improved time-to-market, prototyping, development
support, debugging, can breakout to HDL.

• Providing benefits for non-hardware people: 
through less steep learning curve, software-like
development mindset.

• Comparable or better performance (latency
+throughput) or resource utilisation to hand-
written HDL.

Concerns
• Providing benefits for hardware people: 

improved time-to-market, prototyping, development
support, debugging, can breakout to HDL.

• Providing benefits for non-hardware people: 
through less steep learning curve, software-like
development mindset.

• Comparable or better performance (latency
+throughput) or resource utilisation to hand-
written HDL.

Software
description
of network
program

Hardware
description
of network
program

(High-level)

Our system: Emu

C#

Software
description
of network
program

Hardware
description
of network
program

Verilog

http://www.cl.cam.ac.uk/~djg11/kiwi/

(1) HLS
(High-level)

C#

Software
description
of network
program

Hardware
description
of network
program

Verilog

(2) Library support

+ libraries + libraries

(High-level)

C#

Software
description
of network
program

Hardware
description
of network
program

Verilog

(3) Host environment

+ libraries + libraries

http://github.com/niksu/Pax

(High-level)

47

C#

Software
description
of network
program

Hardware
description
of network
program

Verilog

(3) Hardware envir.

+ libraries + libraries

http://netfpga.org/

(High-level)

10G Port

10G Port

10G Port

10G Port

PCIe & DMA

Input
Arbiter

Output
QueuesMain Logical Core

10G Port

10G Port

10G Port

10G Port

PCIe & DMA

(High-level)
Software

description
of network
program

Hardware
description
of network
program

Lifting & shadowing

C# Verilog
+ libraries + libraries

1

N

… 1

N

…Input
Arbiter

Output
Queues

Packet
processing

logic

1 N…
Physical interface, queues

and other components

Dataplane

W
or

kfl
ow

1

N

… 1

N

…

1 N…

Design is tested using a
testbench that simulates
the hardware being fed a set
of packets, and checking
the packets that result.

1

N

… 1

N
…

Embedding in
rest of pipeline

The design is ultimately
processed by FPGA
vendor-specific tools to
generate an image that
programs the FPGA.
Packets received on
physical network ports
are processed using our
logic.

1

N

… 1

N

…

Embedding in
dataplane

Packet processor
modelled in Verilog

H
DL

-b
as

ed
 d

ev
el

op
m

en
t a

nd
 in

te
gr

at
io

n
st

ag
es

1

N
… 1

N

…

1 N…

1

N

… 1

N

…

1

N

… 1

N
…

1 N…

…

Packet processor
modelled in C#

Design is tested using a
testbench that simulates
the hardware being fed a set
of packets, and checking
the packets that result.

.NET bytecode can
be executed in .NET
VM on various OSs,
and debugged using
existing tools.

Network-scale testing
can be done cheaply
and easily within a
single machine.

Layers of abstraction
between the .NET VM
and the OS-provided
virtual or physical
network interfaces.

1

N

… 1

N

…

Com
pil

ati
on

 to
Ve

rilo
g

Compilation to

.NET bytecode

Embedding in
rest of pipeline

The design is ultimately
processed by FPGA
vendor-specific tools to
generate an image that
programs the FPGA.
Packets received on
physical network ports
are processed using our
logic.

1

N

… 1

N

…

Embedding in
dataplane

Packet processor
modelled in Verilog

HD
L-

ba
se

d
de

ve
lo

pm
en

t a
nd

 in
te

gr
at

io
n

st
ag

es

V i r t u a l i s a t i o n o f
interfaces enables us
to use the packet
processor inside a
network simulator.

Some examples
• Learning switch

• ICMP echo and TCP ping

• DNS

• Memcached

• NAT

Some results

67

High-level
development and debugging

of
FPGA-based network programs

“Program-hosted
Directability” (PhD)

• Program direction

• PhD: transforming programs to host their own
directability features.

• “direction feature” becomes a program in
constrained language.

• Can invoke/reconfigure these features at runtime.

Controller DirectorProgram(Normal interaction
with external world)

Original program behaviour Hosted directability

trace V max_trace_idx

g();

V = f(X, Y);

N++;

trace V max_trace_idx

if V_trace_idx < max_trace_idx then  
 V_trace_buf[V_trace_idx] := V;  
 inc V_trace_idx; 
 continue 
else 
 inc V_trace_overflow; 
 break

g();

V = f(X, Y);

N++;

 Program memory

Location code

Controller’s
memory

Controller DirectorProgram(Normal interaction
with external world)

Original program behaviour Hosted directability

 Program memory

Location code

Controller’s
memory

if V_trace_idx < max_trace_idx then  
 V_trace_buf[V_trace_idx] := V;  
 inc V_trace_idx; 
 continue 
else 
 inc V_trace_overflow; 
 break

Direction-
Augmented

C# code

Verilog

.NET
CIL

Bitstream

 U
nified program

-directing interface. U
sing this interface one can

inspect and m
odify the program

 as it executes, irrespective of
w

hether it is running in softw
are, in sim

ulation, or in hardw
are. Thus

debugging of the program
 can take place interactively by default.

C#
code

By default, debugging can be
done i n te rac t i ve l y us i ng
software debugger, which is one
of the tools of the trade of any
software programmer.

By default, debugging hardware
is similar to the simulation
phase. The output of results is
usually further restricted in
hardware, due to the absence
of a console.

In HDL form, the program can
be tested using simulation tools
provided for the HDL. By
default, debugging involves
iteratively rerunning simulations
after running tests in batch.

Your HDL module can be
included in larger infrastructure
m o d u l e s , t o y i e l d m o re
accurate simulation results, at
t h e e x p e n s e o f l o n g e r
simulation times.

A

B

C

D

E

Emu research
contribution

Softw
are

developm
ent

w
orkflow

H
ardw

are
developm

ent
w

orkflow

Conclusion
• Goal: HLS-based development of network programs

• Currently: using HDL or DSL

• What’s new: lifting+shadowing, host support
environment, improved debugging support.

• Relevance: will help experienced and novices users of
FPGAs, at a time when FPGAs becoming more prevalent.

Conclusion
• Goal: HLS-based development of network programs

• Currently: done using HDL or DSL. We use HLS.

• What’s new: lifting+shadowing, host support
environment, improved debugging support.

• Relevance: will help experienced and novices users of
FPGAs, at a time when FPGAs becoming more prevalent.

Conclusion
• Goal: HLS-based development of network programs

• Currently: done using HDL or DSL. We use HLS.

• What’s new: lifting+shadowing, host support
environment, improved debugging support.

• Relevance: will help experienced and novices users of
FPGAs, at a time when FPGAs becoming more prevalent.

Conclusion
• Goal: HLS-based development of network programs

• Currently: done using HDL or DSL. We use HLS.

• What’s new: lifting+shadowing, host support
environment, improved debugging support.

• Relevance: will help experienced and novice users of
FPGAs, at a time when FPGAs becoming more prevalent.

Thank you

naas-project.org

http://naas-project.org

Extra slides

Three examples:

• print

• break

• unbreak

(need differentiating criteria)

