Programming and refactoring dependent types

Andreas Reuleaux

Programming Languages and Systems group (PLAS), University of Kent

BCS · December 2016

outline

• programming dependent types (examples from IDRIS) 2/3 time • refactoring dependent types (PI-FORALL) 1/3 time

dependent types: definition and first example

Definition (dependent types)

Dependent types are types that may depend on values.

Example

vectors (as opposed to lists) have a notion size: Vect (n: Nat) a

```
Idris> :module Data.Vect

*Data/Vect> the (List _) [2, 17, 5, 9]
[2, 17, 5, 9] : List Integer

*Data/Vect> the (Vect _ _) [2, 17, 5, 9]
[2, 17, 5, 9] : Vect 4 Integer

*Data/Vect> the (Vect _ _) ["hello", "world"]
["hello", "world"] : Vect 2 String
```

dependent types: some background

- The λ -calculus as a mathematical model for the "mechanics of computation" emerged in the 1930's (Alonzo Church)
- Type systems were introduced to distinguish certain classes of valid programs, and predict their behaviour.
- Curry/Howard discovered the correspondence between programs and proofs:

$$x: T \begin{cases} x \text{ is of type } T \\ x \text{ is a proof of } T \end{cases}$$

at the cost of constructive logic and terminating programs

- in *constructive logic* one has to provide witnesses as proofs, as opposed to classical logic whith the law of the excluded middle.
- all programs must terminate, otherwise inconsistencies in the logic are possible. (in IDRIS: *total functions*).

corresponding according to Curry/Howard

The Curry-Howard isomorphism

Conjunction ^ Product type

Implication → Function type

Disjunction V Disjoint union type

Trivial [⊤] One element type

Absurd [⊥] Empty type

Existentially quantified 3 Dependent product

Natural numbers / induction N Natural numbers / recursion

Identity predicates 3 Identity types

vectors, natural numbers, and bounded natural numbers, inductively defined

vectors, natural numbers, and bounded natural numbers, inductively defined vectors (1)

```
*Data/Vect> :doc Vect
Data type Data.Vect.Vect : Nat -> Type -> Type
    Vectors: Generic lists with explicit length in the type

Constructors:
    Nil : Vect 0 a
        Empty vector

(::) : (x : a) -> (xs : Vect k a) -> Vect (S k) a
        A non-empty vector of length S k, consisting of a head element and the rest of the list, of length k.
    infixr 7
```

vectors, natural numbers, and bounded natural numbers, inductively defined vectors (2)

lists and vectors defined ourselves (in a file MyStuff.idr):

```
data MyList : (elem : Type) -> Type where
  LNil : MyList elem
  LCons : (x : elem) -> (xs : MyList elem) -> MyList elem

data MyVect : (len : Nat) -> (elem : Type) -> Type where
  VNil : MyVect Z elem
  VCons : (x : elem) -> (xs : MyVect len elem) -> MyVect (S len) elem
```

vectors, natural numbers, and bounded natural numbers, inductively defined learning to help oneself in $\overline{\text{IDRIS}}$

- ask the type of a function with :t
- ask for general documention with :doc
- browse the IDRIS documentation (for vectors):
 http://www.idris-lang.org/docs/current/base_doc/docs/Data.Vect.html
- have a look at the IDRIS source code (for vectors):
 https://github.com/idris-lang/ldris-dev/blob/master/libs/base/Data/Vect.idr

vectors, natural numbers, and bounded natural numbers, inductively defined vectors (3)

usage:

```
Idris> :1 MyStuff.idr
*MyStuff> :module Data.Vect

*MyStuff *Data/Vect> the (Vect _ _) [5, 7]
[5, 7] : Vect 2 Integer

*MyStuff *Data/Vect> the (Vect _ _) (5 :: (7 :: Nil))
[5, 7] : Vect 2 Integer

*MyStuff *Data/Vect> 5 `VCons` (7 `VCons` VNil)
VCons 5 (VCons 7 VNil) : MyVect 2 Integer
```

vectors, natural numbers, and bounded natural numbers, inductively defined natural numbers

```
*Data/Vect> :doc Nat
Data type Prelude.Nat.Nat : Type
    Natural numbers: unbounded, unsigned integers which can be pattern matched.

Constructors:
    Z : Nat
        Zero

S : Nat -> Nat
        Successor
```

vectors, natural numbers, and bounded natural numbers, inductively defined bounded natural numbers (1)

bounded natural (or finite) numbers: Fin (n: Nat) = $\mathbb{N}_{< n}$ usage:

vectors, natural numbers, and bounded natural numbers, inductively defined bounded natural numbers (2)

```
*Data/Vect> :doc Fin
Data type Data.Fin.Fin : (n : Nat) -> Type
    Numbers strictly less than some bound. The name comes from
    "finite sets".
    It's probably not a good idea to use Fin for arithmetic, and
   they will be exceedingly inefficient at run time.
    Arguments:
       n : Nat -- the upper bound
Constructors:
   FZ: Fin (S k)
   FS: Fin k -> Fin (S k)
```

safe head function (1)

head on IDRIS vectors:

```
*MyStuff *Data/Vect> :t Vect.head
head : Vect (S n) a -> a
*MyStuff *Data/Vect> Vect.head $ [5, 7]
5 : Integer
*MyStuff *Data/Vect> Vect.head $ []
(input):1:11-12: When checking an application of function Data. Vect. head:
        Type mismatch between
                Vect 0 a (Type of [])
        and
                Vect (S n) iType (Expected type)
        Specifically:
                Type mismatch between
                and
                        Sn
```

safe head function (2)

head on HASKELL lists:

```
Prelude > :t head
head :: [a] -> a

Prelude > head [5, 7]
5

Prelude > head []
*** Exception: Prelude.head: empty list
```

head on IDRIS lists:

```
Idris> :t List.head
head : (1 : List a) -> {auto ok : NonEmpty 1} -> a
```

bounds safe lookup (or index) function

common list and vector functions

HASKELL list function	IDRIS vector function (or variation thereof)
head	
head :: [a] -> a	<pre>head : Vect (S len) elem -> elem</pre>
lookup or index	
(!!) :: [a] -> Int -> a	<pre>index : Fin len -> Vect len elem -> elem</pre>
append	
(++) :: [a] -> [a] -> [a]	(++) : Vect m elem -> Vect n elem -> Vect (m + n) elem
take	
take :: Int -> [a] -> [a]	$ \texttt{take} \; : \; (\texttt{n} \; : \; \texttt{Nat}) \; \; \texttt{->} \; \; \texttt{Vect} \; \; (\texttt{n} \; + \; \texttt{m}) \; \; \texttt{elem} \; \; \texttt{->} \; \; \texttt{Vect} \; \; \texttt{n} \; \; \texttt{elem} $
drop	
drop :: Int -> [a] -> [a]	$\label{eq:drop} \texttt{drop} \;:\; (\texttt{n} \;:\; \texttt{Nat}) \; \mbox{$-\!\!\!>$} \; \texttt{Vect} \;\; (\texttt{n} \;+\; \texttt{m}) \;\; \texttt{elem} \; \mbox{$-\!\!\!>$} \; \texttt{Vect} \;\; \texttt{m} \;\; \texttt{elem}$
map (possible definition)	
map :: (a -> b) -> [a] -> [b]	$\mathtt{map} \ : \ (\mathtt{a} \ \mathord{\hspace{1pt}\hspace{1pt}}\mathtt{b}) \ \mathord{\hspace{1pt}\hspace{1pt}}\mathtt{Vect} \ \mathtt{n} \ \mathtt{a} \ \mathord{\hspace{1pt}\hspace{1pt}}\mathtt{Vect} \ \mathtt{n} \ \mathtt{b}$
filter (possible definition)	
filter :: (a -> Bool) -> [a] -> [a]	$\label{eq:filter: (a -> bool) -> Vect n a -> Vect (<=n) a}$
and more	

typical patterns of vector sizes

pattern	used as
S m	one greater than a given size m
	or non-zero, ie. at least one
m+n	the sum of two given vector sizes m and n
<=m	less or equal than a given size m
etc.	

matrix product

$$(n \times m) \times (m \times p) = (n \times p)$$

$$\begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} \times \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} = \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix}$$

$$\begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix}$$

$$\begin{pmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix}$$

```
matrixProduct : Num num =>
   Vect n (Vect m num) -> Vect m (Vect p num) -> Vect n (Vect p num)
```

sorting

sorting lists (vectors), sorting broken down:

- the sorted list (vector) has the same length as the original one
- permutation of the original elements
- any pair of elements is sorted.

dependent pairs

example: reading a vector yields a dependent pair:

```
readVect : IO (len ** Vect len String)
```

as we don't know the size of the vector before hand.

strong types

- Yes, because.../ No, because... as opposed to Boolean True/False
- etc.

proofs

append is easily proved

given plus:

```
plus: Nat -> Nat -> Nat
plus Z m = m
plus (S n) m = S (plus n m)
```

but much harder to prove

```
(+++) : Vect n a -> Vect m a -> Vect (plus' n m) a
```

given a slightly different plus' function:

```
plus' n Z = n
plus' n (S m) = S (plus' n m)
```

example from David Christiansen's Master thesis, chapter 4 (the wording is mine, recent IDRIS vector syntax)

dependently typed languages: inner workings (1)

some key ideas:

expressions and types live in the same realm,
 ie. one common data structure for expressions and types
 (or otherwise mutually recursive ones):

```
data Expr =
  Type
  | Var...
  | Lam...
  | App...
  | ...
```

dependently typed languages: inner workings (2)

cf. this to classical functional languages, where they are seperate:

```
data Expr =
  Var...
  | Lam...
  | App...
  | ...
```

```
data Type =
    | Nat
    | String
    | [Type]
    | (Type, Type)
    | ...
```

types reflecting the structure of expressions, eg.:

- 7 : Nat
- "hello" : String
- (7, ["foo", "bar"]) : (Nat, [String])

dependently typed languages: inner workings (3)

key ideas, continued:

- the function type constructor → is a binder: (x : A) → B(x) similar to a λ-abstraction: λx.E(x), in simple cases we may omit the x, thus just: A → B
- typing rules come in two flavours each: checking rules, and inference rules
 - cf. Stephanie Weirich's Oregon summerschool talks 2014 and 2015

Refactoring PI-FORALL, outline

- refactoring in general
- parsing concrete syntax, in a white space aware manner ie., given the chosen libraries: Trifecta and Bound, as opposed to Parsec and Unbound
- navigation in the zipper representation of the syntax tree
- finding syntax elements, given position information only
- simple classical refactorings (in a dependently typed context): renaming, generalisation
- more ambitious efforts, taking dependent types into account: list-to-vector refactorings
- data-type refactorings in general, eg. list-to-tree

- program transformations to improve the design of existing programs
- typically applied in a step by step manner, each step preserving the original meaning of the program
- well established among software practitioners since the early nineties (William Opdyke, Martin Fowler, ..., for OO languages at the time)

Rough analogies

- Whereas as a compiler translates from one language to another (think eg. of translating from English to French),
- refactoring is rewriting some program in its original language (think eg. of an editor of a newspaper rewriting/improving some text)

Refactoring functional programs

some experience in our group at Kent:

- HaRe for Haskell
- Wrangler for Erlang

building upon that experience: Refactoring dependently typed programs:

• PI-FORALL for now, keeping IDRIS in mind

Refactorings broken down

- parsing
 - syntax structure
 - carries its semantics
 - in refactoring also pragmatics: preserving things beyond that: white-space including comments, desugaring made explicit etc.
- program transformations substitutions (using all the knowledge available)
- ensure that the meaning hasn't changed: type checking, tests.

parsing if-then-else (1)

parsing

```
if a then b else c
```

or more generally

```
if_{-i}-a_{-a'-}then_{-t-}b_{-b'-}else_{-e-}c_{-c-}
```

yields

```
If (V "a") (V "b") (V "c") (Annot Nothing)
```

respectively

```
If_ (IfTok "if" (Ws "{-i-}")) (Ws_ (V "a") (Ws "{-a'-}"))
    (ThenTok "then" (Ws "{-t-}")) (Ws_ (V "b") (Ws "{-b'-}"))
    (ElseTok "else" (Ws "{-e-}")) (Ws_ (V "c") (Ws "{-c-}"))
    (Annot_ Nothing (Ws ""))
```

parsing if-then-else (2)

syntax definitions:

parsing *if-then-else* (3)

```
ifExpr = do
   reserved "if"
   a <- expr
   reserved "then"
   b <- expr
   reserved "else"
    c <- expr
   return (If a b c (Annot Nothing))
ifExpr_ = do
   i <- if_
    a <- expr_
   t <- then
   b <- expr_
    e <- else
    c <- expr_
   return (If i a t b e c (Annot Nothing $ Ws ""))
```

parsing if-then-else (4)

```
-- helper if (likewise: then , else )
-- originally just
-- if_ = do ws <- reserved_ "if"
        return $ IfTok $ ws
if_ :: (TokParsing m
       , DeltaParsing m
       => m (IfTok T.Text)
if = do ws <- reserved "if"</pre>
         let if' = "if"
         ws <- reserved if'
         return $ IfTok (T.pack if') $ ws
-- basic building block
reserved_ :: (TokenParsing m
             , Monad m
             , DeltaParsing m
             => String -> m (Ws T.Text)
reserved_ s = do runUnspaced $ reserved s
```

concrete syntax

can we go back: $Absy_{Bound} \rightarrow ConcreteSyntax_{Bound}$?

- with the help of some lexical info: position etc. maybe
- not in a simple / automatic manner though, difficulties:
 - infix (mixfix) operators, like if-then-else
 - parenthesis/brackets (followed by white space possibly)
 - desugaring
- rethink for Idris

desugaring

$\lambda xy.\ body$	2
$\lambda x. \lambda y. body$	Succ (Succ Zero)
Lams ["x", "y"] body'	Nat 2 $\downarrow desugar$
$\downarrow desugar$	ų and angles
Lam "x" (Lam "y" body")	DCon "Succ" [(DCon "Succ" [(DCon "Zero")])]

binding structure

(Unbound vs.) Edward Kmett's Bound library:

- clever (fast) representation of bound and free variables, and their scopes: generalized generalized de Bruijn indices (conversion to traditional de Bruijn is available)
- we define our expressions as monads, thus Exp a (with free variables in a)
- Scope b Exp a then keeps track of bound variables in b and free variables in a (Scope is a monad transformer), but lightweight.
- really one more degree of freedom: Exp t a with Scope b (Expr t) a
- examples:

```
Exp a =
   Lam String (Scope () Exp a)
   ...

Expr t a =
   Lam t (Scope () (Expr t) a)
   | Lams [t] (Scope Int (Expr t) a)
```

Bound, example

```
>>> (V "x" :@ V "y") :@ V "x"
```

```
>>> abstract1 "x" $ V "x" :@ V "y" :@ V "x"
Scope ((V (B ()) :@ V (F (V "y"))) :@ V (B ()))
```

Bound, substitution

given some term t, say eg.

```
>>> let t = V "x" :0 V "n" :0 V "x"
```

can substitute t' for n in t (or read: substitute n by t'):

```
>>> substitute "n" (V "t'") t
(V "x" :@ V "t'") :@ V "x"
```

this can be seen as *binding* a function $\lambda n.t'$ to t:

$$t>>=\lambda n.t'$$

```
>>> t >>= (\n' -> if n'=="n" then V "t'" else return n') (V "x" :0 V "t'") :0 V "x"
```

Bound, substitution (2)

thus taking advantage of our monad, but need to define *bind* (>>=) beforehand:

```
instance Applicative (Exp t) where
 pure = V
 (<*>) = ap
instance Monad (Exp t) where
 return = V
 V a >>= f = f a
 (x : 0 y) >>= f = (x >>= f) : 0 (y >>= f)
 Lam n s >>= f = Lam n (s >>>= f)
 Type >>= _ = Type
 TrustMe (Annot ann) >>= f = TrustMe (Annot $ (>>= f) <$> ann)
```

thereby also more fine grained control of substitution.

zipper

- navigating up and down (left and right etc.) in the syntax tree
- eg. given a variable, find it's binding occurence up in the tree, do substitution on this subtree, and return the complete tree.
- one tree datatype that contains expressions, declarations, and modules:

```
data Tr a =
    Exp { _exp :: Expr a a }
    | Dcl { _dcl :: Decl a a }
    | Mod { _mod :: Module a a }
    | Aa { _aa :: a }
    deriving (Show)
```

 contrary to the usual zipper implementations: a list of functions as breadcrumbs:

```
type Zipper a = (Tr a, [Tr a -> Tr a])

left :: Refactoring m => Zipper a -> m (Zipper a)
left (Exp (1 :@ r), bs) =
    rsucceed (Exp 1, (\((Exp 1') -> Exp $ 1' :@ r) : bs))

up :: Refactoring m => Zipper a -> m (Zipper a)
up (e, b:bs) = rsucceed $ (b e, bs)
```

finding syntax elements, given position information only

- rough analogy: given a text, page x, line y, column z, find the corresponding chapter, section, sentence, element in the sentence
- calculate the length of every given token, expression, decl..., and thus exact position information.
- with Foldable, Traversable derived automatically
- and Bitraversal defined once, in a straightforward manner in applicative style:

• caveat: have to take bound variables into account: wrap, unwrap

list to vector refactorings (1)

list map vs vector map in PI-FORALL

```
map : [a : Type] -> [b: Type] -> (a -> b) -> List a -> List b
map = \[a] [b] f xs . case xs of
Nil -> Nil
Cons y ys -> Cons (f y) (map [a] [b] f ys)

map : [A:Type] -> [B:Type] -> [n:Nat] -> (A -> B) -> Vec A n -> Vec B n
map = \[A] [B] [n] f v.
case v of
Nil -> Nil
Cons [m] x xs -> Cons [m] (f x) (map[A] [B] [m] f xs)
```

functions having no implicit arguments, even operations like ${\tt Cons}$ are indexed by a vector size in PI-FORALL: ${\tt m}$ here.

[arg] denotes an erasable argument

list to vector refactorings (2)

list append vs vector append in $\operatorname{PI-FORALL}$

```
append : [a:Type] -> List a -> List a -> List a
append = \[a] xs ys. case xs of
   Nil -> ys
   Cons x xs' -> Cons x (append [a] xs' ys)

append : [A :Type] -> [m:Nat] -> [n:Nat] -> Vec A m -> Vec A n -> Vec A (plus m n)
append = \[A] [m] [n] v1 ys . case v1 of
   Nil -> ys
   Cons [m0] x xs -> Cons [plus m0 n] x (append [A] [m0][n] xs ys)
```

list to vector refactorings (3)

- the structure of the list and vector functions are the same in each case
- but we need additional information in various places, and thus additional (erasable) arguments at times
- essentially we need to know the sizes of all the vectors involved, and their operations
- these vector sizes are given as patterns typically (as mentioned above), relating eg. the sizes of input and output vectors

list to vector refactorings (4)

idea:

- require the user to provide the desired vector signatures, as these would be too difficult to guess
- calculate the body (definition) of a vector function, ie. all the vector sizes involved
- borrowing ideas from Hindley-Milner type inference: treating the vector sizes as unknow initially (similar to type variables)
- and calculate them from the given constraints, taking into account all the available information

list to vector refactorings (5)

PossiblyVar allows for various vector sizes, known and unknown, and is essentially an elaborate natural number type, that we use in various places:

```
data PossiblyVar t =
  ZeroV
  | SuccV (PossiblyVar t)
  | Some t
  | VarV t
  | Sum (PossiblyVar t) (PossiblyVar t)
  deriving (Eq, Ord, Show, Functor, Foldable, Traversable)
```

- A concrete vector size of *m* would thus be represented as Some "m".
- the concrete size succ m as SuccV (Some "m").
- the size of a vector that we haven't decided upon yet, as
 VarV "alpha"
- etc.

list to vector refactorings (6)

working already:

```
>>> ((\m -> (\t -> pp $ evalState (vect t) vInit) $ fromRight' $ (ezipper $
    Mod $ nopos $ t2s $ m) >>= forgetZ >>= navigate [Decl 2] >>= focus) <$>) $
    (runExceptT $ getModules ["samples"] "List") >>= return . last .
    fromRight'
Parsing File "samples/Nat.pi"
Parsing File "samples/List.pi"
map = \[Some a] [Some b] [VarV alpha] (Some f) (Some xs) .
    case xs of
        Nil -> Nil
        (Cons [VarV gamma] y ys) ->
        Cons [VarV beta] ((f y)) ((map [a] [b] f ys))
```

next steps: use *unification* to decide upon these vectors sizes, taking all the given constraints into account.

Unification is the process of finding an answer to the question, if two terms can be made equal, and if so, with what substitutions.