Programming and refactoring dependent types

Andreas Reuleaux

Programming Languages and Systems group (PLAS), University of Kent

BCS - December 2016

outline

e programming dependent types (examples from IDRIS) 2/3 time
e refactoring dependent types (PI-FORALL) 1/3 time

dependent types: definition and first example

Definition (dependent types)
Dependent types are types that may depend on values.

Example

vectors (as opposed to lists) have a notion size: Vect (n: Nat) a
Idris> :module Data.Vect

*Data/Vect> the (List _) [2, 17, 5, 9]
[2, 17, 5, 9] : List Integer

*Data/Vect> the (Vect _ _) [2, 17, 5, 9]
[2, 17, 5, 9] : Vect 4 Integer

*Data/Vect> the (Vect _ _) ["hello", "world"]
["hello", "world"] : Vect 2 String

dependent types: some background

e The A-calculus as a mathematical model for the “mechanics of
computation” emerged in the 1930's (Alonzo Church)

e Type systems were introduced to distinguish certain classes of valid
programs, and predict their behaviour.

e Curry/Howard discovered the correspondence between programs and
proofs:

x is of type T
x: T
x is a proof of T

at the cost of constructive logic and terminating programs

e in constructive logic one has to provide witnesses as proofs, as
opposed to classical logic whith the law of the excluded middle.

e all programs must terminate, otherwise inconsistencies in the logic
are possible. (in IDRIS: total functions).

corresponding according to Curry/Howard

The Curry-Howard isomorphism

Conjunction

Implication

Disjunction

Trivial

Absurd

Universally quantified
Existentially quantified
Natural numbers / induction
Inductive predicates
Co-inductive predicates

Identity predicates

A VN zZ w < - 4 < |

(2]

Product type

Function type

Disjoint union type

One element type

Empty type

Dependent function space
Dependent product

Natural numbers / recursion
Inductively defined types
Co-inductively defined types

Identity types

vectors, natural numbers, and bounded natural numbers,
inductively defined

vectors, natural numbers, and bounded natural numbers, inductively defined

vectors (1)

*Data/Vect> :doc Vect
Data type Data.Vect.Vect : Nat -> Type -> Type
Vectors: Generic lists with explicit length in the type

Constructors:
Nil : Vect O a
Empty vector

(::) ¢ (x : a) -> (xs : Vect k a) -> Vect (S k) a
A non-empty vector of length S k, consisting of a head element
and the rest of the list, of length k.
infixr 7

vectors, natural numbers, and bounded natural numbers, inductively defined

vectors (2)

lists and vectors defined ourselves (in a file MyStuff.idr):

data MyList : (elem : Type) -> Type where
LNil : MyList elem
LCons : (x : elem) —-> (xs : MyList elem) -> MyList elem

data MyVect : (len : Nat) -> (elem : Type) -> Type where
VNil : MyVect Z elem
VCons : (x : elem) -> (xs : MyVect len elem) -> MyVect (S len) elem

vectors, natural numbers, and bounded natural numbers, inductively defined

learning to help oneself in IDRIS

e ask the type of a function with :t
e ask for general documention with :doc

e browse the IDRIS documentation (for vectors):
http://www.idris-lang.org/docs/current/base_doc/docs/Data.Vect.html

e have a look at the IDRIS source code (for vectors):
https://github.com/idris-lang/Idris-dev/blob/master/libs/base/Data/Vect.idr

http://www.idris-lang.org/docs/current/base_doc/docs/Data.Vect.html
https://github.com/idris-lang/Idris-dev/blob/master/libs/base/Data/Vect.idr

vectors, natural numbers, and bounded natural numbers, inductively defined

vectors (3)

usage:

Idris> :1 MyStuff.idr
*MyStuff> :module Data.Vect

*MyStuff *Data/Vect> the (Vect _ _) [5, 7]
[6, 71 : Vect 2 Integer

*MyStuff *Data/Vect> the (Vect _ _) (5 :: (7 :: Nil))
[5, 7] : Vect 2 Integer

*MyStuff *Data/Vect> 5 “VCons~ (7 “VCons™ VNil)
VCons 5 (VCons 7 VNil) : MyVect 2 Integer

vectors, natural numbers, and bounded natural numbers, inductively defined

natural numbers

*Data/Vect> :doc Nat

Data type Prelude.Nat.Nat : Type
Natural numbers: unbounded, unsigned integers which can be
pattern matched.

Constructors:
Z : Nat
Zero

S : Nat -> Nat
Successor

vectors, natural numbers, and bounded natural numbers, inductively defined

bounded natural numbers (1)

bounded natural (or finite) numbers: Fin (n: Nat) = N,
usage:

Idris> :module Data.Fin

*Data/Fin> the (Fin 5) 3
FS (FS (FS FZ)) : Fin 5

*Data/Fin> the (Fin 5) 7
(input):1:14:When checking argument prf to function Data.Fin.fromInteger:
When using 7 as a literal for a Fin &5
7 is not strictly less than 5

vectors, natural numbers, and bounded natural numbers, inductively defined

bounded natural numbers (2)

*Data/Vect> :doc Fin
Data type Data.Fin.Fin : (n : Nat) -> Type
Numbers strictly less than some bound. The name comes from

"finite sets".

It's probably not a good idea to use Fin for arithmetic, and
they will be exceedingly inefficient at run time.

Arguments:
n : Nat -- the upper bound

Constructors:
FZ : Fin (S k)

FS : Fin k -> Fin (S k)

safe head function (1)

head on IDRIS vectors:

*MyStuff *Data/Vect> :t Vect.head
head : Vect (S n) a -> a

*MyStuff *Data/Vect> Vect.head $ [5, 7]
5 : Integer

*MyStuff *Data/Vect> Vect.head $ []
(input):1:11-12:When checking an application of function Data.Vect.head:
Type mismatch between
Vect 0 a (Type of [1)

and
Vect (S n) iType (Expected type)
Specifically:
Type mismatch between
0
and

Sn

safe head function (2)

head on HASKELL lists:

Prelude > :t head
head :: [a] -> a

Prelude > head [5, 7]
5

Prelude > head []
*** Exception: Prelude.head: empty list

head on IDRIS lists:

Idris> :t List.head
head : (1 : List a) -> {auto ok : NonEmpty 1} -> a

bounds safe lookup (or index) function

*Data/Vect> :t Vect.index
index : Fin len -> Vect len elem -> elem

*Data/Vect> Vect.index 2 [1, 4, 23, 17]
23 : Integer

*Data/Vect> Vect.index 6 [1, 4, 23, 17]
(input) :1:14:When checking argument prf to function Data.Fin.fromInteger:
When using 6 as a literal for a Fin 4
6 is not strictly less than 4

common list and vector functions

HASKELL list function | IDRIS vector function (or variation thereof)

head

head :: [a] -> a ‘ head : Vect (S len) elem -> elem

lookup or index

(1) :: [a] -> Int -> a ‘ index : Fin len -> Vect len elem -> elem

append

(++) :: [a] -> [a] -> [a] ‘ (++) : Vect m elem -> Vect n elem -> Vect (m + n) elem
take

take :: Int -> [a] -> [al ‘ take : (n : Nat) -> Vect (n + m) elem -> Vect n elem
drop

drop :: Int -> [a] -> [a] drop : (n : Nat) -> Vect (n + m) elem -> Vect m elem
map (possible definition)

map :: (a ->b) -> [a] -> [b] ‘ map : (a -> b) -> Vect n a -> Vect n b

filter (possible definition)

filter :: (a -> Bool) -> [a] -> [a] ‘ filter : (a -> bool) -> Vect n a -> Vect (<=n) a

and more

typical patterns of vector sizes

pattern | used as

one greater than a given size n

Sm .

or non-zero, ie. at least one
mtn the sum of two given vector sizes m and n
<=m less or equal than a given size n

etc.

matrix product

(nx m) x (mxp)=(nxp)

()-

matrixProduct : Num num =>
Vect n (Vect m num) -> Vect m (Vect p num) -> Vect n (Vect p num)

sorting

sorting lists (vectors), sorting broken down:
e the sorted list (vector) has the same length as the original one
e permutation of the original elements

e any pair of elements is sorted.

dependent pairs

example: reading a vector yields a dependent pair:

readVect : I0 (len ** Vect len String)

as we don't know the size of the vector before hand.

strong types

e Yes, because../ No, because..
as opposed to Boolean True/False

e etc.

proofs

append is easily proved

(++) : (xs : Vect n elem) -> (ys : Vect m elem) -> Vect (plus n m) elem

++) 01 ys = ys
(++) (x::x8) ys = x :: (xs ++ ys)
given plus :

plus: Nat -> Nat -> Nat
plus Zm = m
plus (8 n) m = S (plus n m)

but much harder to prove
(+++) : Vect n a -> Vect m a -> Vect (plus' n m) a

given a slightly different plus' function:

plus' nZ =n
plus' n (S m) = S (plus' n m)

example from David Christiansen’s Master thesis, chapter 4
(the wording is mine, recent IDRIS vector syntax)

dependently typed languages: inner workings (1)

some key ideas:

e expressions and types live in the same realm,

ie. one common data structure for expressions and types
(or otherwise mutually recursive ones):

data Expr =
Type
| Var...
| Lam...
| App...
Iy

dependently typed languages: inner workings (2)

cf. this to classical functional languages, where they are seperate:

data Expr = daTaNZzpe -
Yaiéﬁ' | String
o | [Typel
| App...

| | (Type, Type)
| ...

types reflecting the structure of expressions, eg.:
e 7 : Nat
e "hello” : String
e (7, ['foo", "bar"]) : (Nat, [String])

()

/\ VAN

7 [“foo”, "bar"] Nat [String]

dependently typed languages: inner workings (3)

key ideas, continued:

e the function type constructor — is a binder: (x: A) — B(x)
similar to a A-abstraction: Ax.E(x),
in simple cases we may omit the x, thus just: A — B
e typing rules come in two flavours each: checking rules, and inference
rules
cf. Stephanie Weirich's Oregon summerschool talks 2014 and 2015

Refactoring PI-FORALL, outline

e refactoring in general

e parsing concrete syntax, in a white space aware manner ie., given
the chosen libraries: Trifecta and Bound, as opposed to Parsec and
Unbound

e navigation in the zipper representation of the syntax tree
e finding syntax elements, given position information only

e simple classical refactorings (in a dependently typed context):
renaming, generalisation

e more ambitious efforts, taking dependent types into account:
list-to-vector refactorings

e data-type refactorings in general, eg. list-to-tree

Refactoring

e program transformations to improve the design of existing programs
e typically applied in a step by step manner, each step preserving the
original meaning of the program

e well established among software practitioners since the early nineties
(William Opdyke, Martin Fowler, ..., for OO languages at the time)

Refactoring

Rough analogies

e Whereas as a compiler translates from one language to another
(think eg. of translating from English to French),

e refactoring is rewriting some program in its original language
(think eg. of an editor of a newspaper rewriting/improving some
text)

Refactoring

Refactoring functional programs

some experience in our group at Kent:

e HaRe for Haskell
e Wrangler for Erlang

building upon that experience: Refactoring dependently typed programs:

e PI-FORALL for now, keeping IDRIS in mind

Refactoring

Refactorings broken down

® parsing

— syntax - structure

— carries its semantics

— in refactoring also pragmatics: preserving things beyond that:
white-space including comments, desugaring made explicit etc.

e program transformations - substitutions (using all the knowledge
available)

e ensure that the meaning hasn't changed: type checking, tests.

parsing if-then-else (1)

parsing

if a then b else c

or more generally
if{-i-}a{-a'-}then{-t-}b{-b'-telse{-e-}c{-c-}
yields

If (V "a") (V "b") (V "c") (Annot Nothing)

respectively

If_ (IfTok "if" (Ws "{-i-}")) (Ws_ (V "a") (Ws "{-a'-}"))
(ThenTok "then" (Ws "{-t-}")) (Ws_ (V "b") (Ws "{-b'-}"))
(ElseTok "else" (Ws "{-e-}")) (Ws_ (V "c") (Ws "{-c-}"))
(Annot_ Nothing (Ws ""))

parsing if-then-else (2)

syntax definitions:

data Expr t a =
Va
Ws_ (Expr t a) (Ws t)

| i.am t (Scope () (Expr t) a)

If (Expr t a) (Expr t a) (Expr t a) (Annot t a)
If_ (IfTok t) (Expr t a) (ThenTok t) (Expr t a)
(ElseTok t) (Expr t a) (Annot t a)

parsing if-then-else (3)

ifExpr = do
reserved "if"
a <- expr
reserved "then"
b <- expr
reserved "else"
c <- expr

return (If a b ¢ (Annot Nothing))

ifExpr_ = do

i <= if_

a <- expr_
t <- then_
b <- expr_
e <- else_
c <- expr_

return (If_ i at b e ¢ (Annot_ Nothing $ Ws ""))

parsing if-then-else (4)
-— helper if_(likewise: then_, else_)
-- originally just

-= if_ = do ws <- reserved_ "if"
== return $ IfTok $ ws

if_ :: (TokParsing m
, DeltaParsing m
)
=> m (IfTok T.Text)
if_ = do ws <- reserved_ "if"
let if' = "if"

ws <- reserved_ if'
return $ IfTok (T.pack if') $ ws

-- basic building block
reserved_ :: (TokenParsing m

, Monad m

, DeltaParsing m

)

=> String -> m (Ws T.Text)
reserved_ s = do runUnspaced $ reserved s

concrete syntax

can we go back: Absygound — ConcreteSyntaxgound ?
e with the help of some lexical info: position etc. maybe
e not in a simple / automatic manner though, difficulties:

— infix (mixfix) operators, like if-then-else
— parenthesis/brackets (followed by white space possibly)
— desugaring

e rethink for Idris

desugaring

Azy. body

Az. Ay. body

Lams ["x", "y"] body’
| desugar

Lam"x" (Lam "y" body")

Succ (Succ Zero)

Nat 2

} desugar

DCon "Succ” [...(DCon "Succ”
[...(DCon "Zero"...)]...)]

binding structure
(Unbound vs.) Edward Kmett's Bound library:

clever (fast) representation of bound and free variables, and their
scopes: generalized generalized de Bruijn indices (conversion to
traditional de Bruijn is available)

we define our expressions as monads, thus Exp a (with free variables
in a)

Scope b Exp a then keeps track of bound variables in b and free
variables in a (Scope is a monad transformer), but lightweight.
really one more degree of freedom: Exp t a

with Scope b (Exprt) a

examples:

Exp a =
Lam String (Scope () Exp a)

Expr t a =
Lam t (Scope () (Expr t) a)
| Lams [t] (Scope Int (Expr t) a)

Bound, example

>>> (V "x" :@ V "y") :@ V "x"

>>> abstractl "x" $ V "x" :@ V "y" :@ V "x"
Scope ((V (B ()) :@ V (F (V "y"))) :@ V (B)))

Bound, substitution

given some term t, say eg.
>>> let t =V "x" :@ V "n" :@ V "x"
can substitute t' for n in t (or read: substitute n by t'):

tt'/n]

>>> substitute "n" (V "t'") t
(V "x" @V Iltlll) @V "x"

this can be seen as binding a function An.t' to t:

t>>= An.t

>>> t >>= (\n' -> if n'=="n" then V "t'" else return n')
(V "x" @ V Iltlll) @V "x"

Bound, substitution (2)

thus taking advantage of our monad, but need to define bind (>>=)
beforehand:

instance Applicative (Exp t) where
pure = V
(<x>) = ap

instance Monad (Exp t) where
return = V

V a >=f =f a

(x :@y) >=f=(x>=1) :@ (y >>= £)
Lam n s >>= f = Lam n (s >>>= f)

Type >>= _ = Type

TrustMe (Annot ann) >>= f = TrustMe (Annot $ (>>= f) <$> ann)

thereby also more fine grained control of substitution.

zipper
e navigating up and down (left and right etc.) in the syntax tree
e eg. given a variable, find it's binding occurence up in the tree, do
substitution on this subtree, and return the complete tree.

e one tree datatype that contains expressions, declarations, and
modules:

data Tr a =
Exp { _exp :: Expr a a }
| Dcl { _dcl :: Decl a a }
| Mod { _mod :: Module a a }
| Aa { _aa :: a}
deriving (Show)

e contrary to the usual zipper implementations: a list of functions as
breadcrumbs:

type Zipper a = (Tr a, [Tr a -> Tr a])
left :: Refactoring m => Zipper a -> m (Zipper a)
left (Exp (1 :@ r), bs) =

rsucceed (Exp 1, (\(Exp 1') -> Exp $ 1' :@ r) : bs)

up :: Refactoring m => Zipper a -> m (Zipper a)
up (e, b:bs) = rsucceed $ (b e, bs)

finding syntax elements, given position information only

e rough analogy: given a text, page x, line y, column z, find the
corresponding chapter, section, sentence, element in the sentence

e calculate the length of every given token, expression, decl..., and
thus exact position information.

e with Foldable, Traversable derived automatically
e and Bitraversal defined once, in a straightforward manner in
applicative style:

bitraverse f g = bt where

bt (V a) =V <$>ga
bt (Lam p b) = Lam <$> f p <*> bitraverseScope f g b
bt (Type) = pure Type

bt (Type_ tt ws) = Type_ <$> f tt <*> traverse f ws

e caveat: have to take bound variables into account: wrap , unwrap

list to vector refactorings (1)

list map vs vector map in PI-FORALL

map : [a : Typel -> [b: Type]l -> (a -> b) -> List a -> List b
map = \[a] [b] f xs . case xs of
Nil -> Nil

Cons y ys -> Cons (f y) (map [al[b]l f ys)
map : [A:Type]l -> [B:Type]l -> [n:Nat] -> (A -> B) -> Vec A n -> Vec B n
map = \[A][B][n] f v.

case v of
Nil -> Nil

Cons [m] x xs -> Cons [m] (f x) (map[A][B] [m] f xs)

functions having no implicit arguments, even operations like Cons are
indexed by a vector size in PI-FORALL: m here.

[arg] denotes an erasable argument

list to vector refactorings (2)

list append vs vector append in PI-FORALL

append : [a:Type]l -> List a -> List a -> List a
append = \[a] xs ys. case xs of

Nil -> ys

Cons x xs' -> Cons x (append [al] xs' ys)

append : [A :Type]l ->[m:Nat] -> [n:Nat] -> Vec Am -> Vec A n -> Vec A (plus m n)

append = \[A] [m] [n] vl ys . case vl of
Nil -> ys
Cons [m0] x xs -> Cons [plus mO n] x (append [A] [mO]([n] xs ys)

list to

vector refactorings (3)

the structure of the list and vector functions are the same in each
case

but we need additional information in various places, and thus
additional (erasable) arguments at times

essentially we need to know the sizes of all the vectors involved, and
their operations

these vector sizes are given as patterns typically (as mentioned
above), relating eg. the sizes of input and output vectors

list to vector refactorings (4)

idea:

require the user to provide the desired vector signatures, as these
would be too difficult to guess

calculate the body (definition) of a vector function, ie. all the vector
sizes involved

borrowing ideas from Hindley-Milner type inference: treating the
vector sizes as unknow initially (similar to type variables)

and calculate them from the given constraints, taking into account
all the available information

list to vector refactorings (5)

PossiblyVar allows for various vector sizes, known and unknown, and is

essentially an elaborate natural number type, that we use in various
places:
data PossiblyVar t =

ZeroV

| SuccV (PossiblyVar t)

| Some t

| Varv t

| Sum (PossiblyVar t) (PossiblyVar t)
deriving (Eq, Ord, Show, Functor, Foldable, Traversable)

e A concrete vector size of m would thus be represented as Some "m" .

e the concrete size succ m as SuccV (Some "m") .

e the size of a vector that we haven't decided upon yet, as
VarV "alpha" .

e etc.

list to vector refactorings (6)

working already:

>>> ((\m -> (\t -> pp $ evalState (vect t) vInit) $ fromRight' $ (ezipper $
Mod $ nopos $ t2s $ m) >>= forgetZ >>= navigate [Decl 2] >>= focus) <$>) §$
(runExceptT $ getModules ["samples"] "List") >>= return . last .
fromRight'
Parsing File "samples/Nat.pi"
Parsing File "samples/List.pi"
map = \[Some a] [Some b] [VarV alpha] (Some f) (Some xs) .
case xs of
Nil -> Nil
(Cons [VarV gammal y ys) ->
Cons [VarV beta] ((f y)) ((map [a] [b]l f ys))

next steps: use unification to decide upon these vectors sizes, taking all
the given constraints into account.

Unification is the process of finding an answer to the question, if two
terms can be made equal, and if so, with what substitutions.

	programming dependent types
	refactoring
	parsing concrete syntax
	Conclusions

