Programming and refactoring dependent types

Andreas Reuleaux

Programming Languages and Systems group (PLAS), University of Kent

BCS · December 2016
outline

• programming dependent types (examples from Idris) 2/3 time
• refactoring dependent types (Pi-FORALL) 1/3 time
Definition (dependent types)

Dependent types are types that may depend on values.

Example

vectors (as opposed to lists) have a notion size:

\[
\text{Vect (n: Nat) a}
\]

```
Idris> :module  Data.Vect

*Data/Vect> the (List _) [2, 17, 5, 9]
[2, 17, 5, 9] : List Integer

*Data/Vect> the (Vect _ _) [2, 17, 5, 9]

*Data/Vect> the (Vect _ _) ["hello", "world"]
["hello", "world"] : Vect 2 String
```
dependent types: some background

- The \textit{\(\lambda\)-calculus} as a mathematical model for the “mechanics of computation” emerged in the 1930’s (Alonzo Church)
- \textit{Type systems} were introduced to distinguish certain classes of valid programs, and predict their behaviour.
- \textit{Curry/Howard} discovered the correspondence between programs and proofs:
 \[
 x : T \begin{cases}
 x \text{ is of type } T \\
 x \text{ is a proof of } T
 \end{cases}
 \]
 at the cost of \textit{constructive logic} and \textit{terminating programs}
- in \textit{constructive logic} one has to provide witnesses as proofs, as opposed to classical logic with the law of the excluded middle.
- all programs must terminate, otherwise inconsistencies in the logic are possible. (in Idris: \textit{total functions}).
corresponding according to Curry/Howard

The Curry-Howard isomorphism

- Conjunction \land Product type
- Implication \rightarrow Function type
- Disjunction \lor Disjoint union type
- Trivial \top One element type
- Absurd \bot Empty type
- Universally quantified \forall Dependent function space
- Existentially quantified \exists Dependent product
- Natural numbers / induction \mathbb{N} Natural numbers / recursion
- Inductive predicates \mathcal{I} Inductively defined types
- Co-inductive predicates \mathcal{C} Co-inductively defined types
- Identity predicates \mathcal{I} Identity types
vectors, natural numbers, and bounded natural numbers, inductively defined
vectors, natural numbers, and bounded natural numbers, inductively defined vectors (1)

*Data/Vect> :doc Vect
Data type Data.Vect.Vect : Nat -> Type -> Type
 Vectors: Generic lists with explicit length in the type

Constructors:
 Nil : Vect 0 a
 Empty vector

 (::) : (x : a) -> (xs : Vect k a) -> Vect (S k) a
 A non-empty vector of length S k, consisting of a head element and the rest of the list, of length k.
infixr 7
vectors, natural numbers, and bounded natural numbers, inductively defined vectors (2)

lists and vectors defined ourselves (in a file MyStuff.idr):

data MyList : (elem : Type) -> Type where
 LNil : MyList elem
 LCons : (x : elem) -> (xs : MyList elem) -> MyList elem

data MyVect : (len : Nat) -> (elem : Type) -> Type where
 VNil : MyVect Z elem
 VCons : (x : elem) -> (xs : MyVect len elem) -> MyVect (S len) elem
vectors, natural numbers, and bounded natural numbers, inductively defined
learning to help oneself in Idris

- ask the type of a function with :t
- ask for general documentation with :doc
- browse the Idris documentation (for vectors):
- have a look at the Idris source code (for vectors):
vectors, natural numbers, and bounded natural numbers, inductively defined vectors (3)

Usage:

```idris
Idris> :l MyStuff.idr
*MyStuff> :module Data.Vect

*MyStuff *Data/Vect> the (Vect _ _) [5, 7] [5, 7] : Vect 2 Integer

*MyStuff *Data/Vect> the (Vect _ _) (5 :: (7 :: Nil)) [5, 7] : Vect 2 Integer

*MyStuff *Data/Vect> 5 `VCons` (7 `VCons` VNil) VCons 5 (VCons 7 VNil) : MyVect 2 Integer
```
vectors, natural numbers, and bounded natural numbers, inductively defined
natural numbers

*Data/Vect>: doc Nat
Data type Prelude.Nat.Nat : Type
 Natural numbers: unbounded, unsigned integers which can be
 pattern matched.

Constructors:
 Z : Nat
 Zero

 S : Nat -> Nat
 Successor
vectors, natural numbers, and bounded natural numbers, inductively defined
bounded natural numbers (1)

bounded natural (or finite) numbers: \(\text{Fin}(n : \text{Nat}) = \mathbb{N}_{<n} \)

usage:

```
Idris> :module Data.Fin

*Data/Fin> the (Fin 5) 3
FS (FS (FS FZ)) : Fin 5

*Data/Fin> the (Fin 5) 7
(input):1:14:When checking argument prf to function Data.Fin.fromInteger:
    When using 7 as a literal for a Fin 5
    7 is not strictly less than 5
```
vectors, natural numbers, and bounded natural numbers, inductively defined
bounded natural numbers (2)

Data/Vect> :doc Fin

Data type Data.Fin.Fin : (n : Nat) -> Type

Numbers strictly less than some bound. The name comes from "finite sets".

It's probably not a good idea to use Fin for arithmetic, and they will be exceedingly inefficient at run time.

Arguments:

n : Nat -- the upper bound

Constructors:

FZ : Fin (S k)

FS : Fin k -> Fin (S k)
safe head function (1)

head on Idris vectors:

*MyStuff *Data/Vect> :t Vect.head
head : Vect (S n) a -> a

*MyStuff *Data/Vect> Vect.head $ [5, 7]
5 : Integer

*MyStuff *Data/Vect> Vect.head $ []
(input):1:11-12:When checking an application of function Data.Vect.head:
 Type mismatch between
 Vect 0 a (Type of [])
 and
 Vect (S n) iType (Expected type)

Specifically:
 Type mismatch between
 0
 and
 S n
safe head function (2)

head on Haskell lists:

Prelude > :t head
head :: [a] -> a

Prelude > head [5, 7]
5

Prelude > head []
*** Exception: Prelude.head: empty list

head on Idris lists:

Idris> :t List.head
head : (l : List a) -> {auto ok : NonEmpty l} -> a
bounds safe lookup (or *index*) function

Data/Vect> :t Vect.index
index : Fin len -> Vect len elem -> elem

Data/Vect> Vect.index 2 [1, 4, 23, 17]
23 : Integer

Data/Vect> Vect.index 6 [1, 4, 23, 17]
(input):1:14:When checking argument prf to function Data.Fin.fromInteger:
 When using 6 as a literal for a Fin 4
 6 is not strictly less than 4
<table>
<thead>
<tr>
<th>Haskell list function</th>
<th>Idris vector function (or variation thereof)</th>
</tr>
</thead>
<tbody>
<tr>
<td>head</td>
<td>head : Vect (S len) elem (\rightarrow) elem</td>
</tr>
<tr>
<td>head :: [a] (\rightarrow) a</td>
<td></td>
</tr>
<tr>
<td>lookup or index</td>
<td>index : Fin len (\rightarrow) Vect len elem (\rightarrow) elem</td>
</tr>
<tr>
<td>(!!) :: [a] (\rightarrow) Int (\rightarrow) a</td>
<td></td>
</tr>
<tr>
<td>append</td>
<td>(++): Vect m elem (\rightarrow) Vect n elem (\rightarrow) Vect ((m + n)) elem</td>
</tr>
<tr>
<td>(++) :: [a] (\rightarrow) [a] (\rightarrow) [a]</td>
<td></td>
</tr>
<tr>
<td>take</td>
<td>take : (n : Nat) (\rightarrow) Vect ((n + m)) elem (\rightarrow) Vect n elem</td>
</tr>
<tr>
<td>take :: Int (\rightarrow) [a] (\rightarrow) [a]</td>
<td></td>
</tr>
<tr>
<td>drop</td>
<td>drop : (n : Nat) (\rightarrow) Vect ((n + m)) elem (\rightarrow) Vect m elem</td>
</tr>
<tr>
<td>drop :: Int (\rightarrow) [a] (\rightarrow) [a]</td>
<td></td>
</tr>
<tr>
<td>map (possible definition)</td>
<td>map : (a (\rightarrow) b) (\rightarrow) Vect n a (\rightarrow) Vect n b</td>
</tr>
<tr>
<td>map :: (a (\rightarrow) b) (\rightarrow) [a] (\rightarrow) [b]</td>
<td></td>
</tr>
<tr>
<td>filter (possible definition)</td>
<td>filter : (a (\rightarrow) bool) (\rightarrow) Vect n a (\rightarrow) Vect ((\leq n)) a</td>
</tr>
<tr>
<td>filter :: (a (\rightarrow) Bool) (\rightarrow) [a] (\rightarrow) [a]</td>
<td></td>
</tr>
<tr>
<td>and more</td>
<td></td>
</tr>
</tbody>
</table>
typical patterns of vector sizes

<table>
<thead>
<tr>
<th>pattern</th>
<th>used as</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s _m$</td>
<td>one greater than a given size m or non-zero, i.e. at least one</td>
</tr>
<tr>
<td>$m+n$</td>
<td>the sum of two given vector sizes m and n</td>
</tr>
<tr>
<td>$\leq m$</td>
<td>less or equal than a given size m</td>
</tr>
<tr>
<td>etc.</td>
<td></td>
</tr>
</tbody>
</table>
matrix product

$$(n \times m) \times (m \times p) = (n \times p)$$

\[
\begin{pmatrix}
\vdots \\
\vdots \\
\vdots \\
\end{pmatrix} \times \begin{pmatrix}
\vdots \\
\vdots \\
\vdots \\
\end{pmatrix} = \begin{pmatrix}
\vdots \\
\vdots \\
\vdots \\
\end{pmatrix}
\]

matrixProduct : Num num =>
Vect n (Vect m num) => Vect m (Vect p num) => Vect n (Vect p num)
sorting lists (vectors), sorting broken down:

- the sorted list (vector) has the same length as the original one
- permutation of the original elements
- any pair of elements is sorted.
dependent pairs

example: reading a vector yields a dependent pair:

\[
\text{readVect} : \text{IO} (\text{len} \; ** \; \text{Vect} \; \text{len} \; \text{String})
\]

as we don’t know the size of the vector before hand.
strong types

- Yes, because.../ No, because...
 as opposed to Boolean True/False
- etc.
append is easily proved

\[
(++) : (xs : \text{Vect } n \text{ elem}) \rightarrow (ys : \text{Vect } m \text{ elem}) \rightarrow \text{Vect } (\text{plus } n \text{ m}) \text{ elem}
\]
\[
(++) [] \quad ys = ys
\]
\[
(++) (x :: xs) \quad ys = x :: (xs ++ ys)
\]

given \plus:

\[
\text{plus : Nat} \rightarrow \text{Nat} \rightarrow \text{Nat}
\]
\[
\text{plus } Z \text{ m} = m
\]
\[
\text{plus } (S \text{ n}) \text{ m} = S (\text{plus } n \text{ m})
\]

but much harder to prove

\[
(++++) : \text{Vect } n \text{ a} \rightarrow \text{Vect } m \text{ a} \rightarrow \text{Vect } (\text{plus' } n \text{ m}) \text{ a}
\]

given a slightly different \plus' function:

\[
\text{plus' } n \text{ Z} = n
\]
\[
\text{plus' } n \text{ (S m)} = S (\text{plus' } n \text{ m})
\]

eexample from David Christiansen's Master thesis, chapter 4
(the wording is mine, recent Idris vector syntax)
some key ideas:

- expressions and types live in the same realm, ie. one common data structure for *expressions* and *types* (or otherwise mutually recursive ones):

```haskell
data Expr =
  Type
  | Var...
  | Lam...
  | App...
  | ...
```
dependently typed languages: inner workings (2)

cf. this to classical functional languages, where they are separate:

```
data Expr =
  Var...
  | Lam...
  | App...
  | ...
```

```
data Type =
  | Nat
  | String
  | [Type]
  | (Type, Type)
  | ...
```

types reflecting the structure of expressions, eg.:

- 7 : Nat
- "hello" : String
- (7, ["foo", "bar"]) : (Nat, [String])
dependently typed languages: inner workings (3)

key ideas, continued:

- the function type constructor \(\rightarrow \) is a binder: \((x : A) \rightarrow B(x) \)
 similar to a \(\lambda \)-abstraction: \(\lambda x.E(x) \),
 in simple cases we may omit the \(x \), thus just: \(A \rightarrow B \)

- typing rules come in two flavours each: checking rules, and inference rules
 cf. Stephanie Weirich’s Oregon summerschool talks 2014 and 2015
Refactoring Pi-Forall, outline

- refactoring in general
- parsing concrete syntax, in a white space aware manner ie., given
 the chosen libraries: Trifecta and Bound, as opposed to Parsec and
 Unbound
- navigation in the zipper representation of the syntax tree
- finding syntax elements, given position information only
- simple classical refactorings (in a dependently typed context):
 renaming, generalisation
- more ambitious efforts, taking dependent types into account:
 list-to-vector refactorings
- data-type refactorings in general, eg. list-to-tree
Refactoring

- program transformations to improve the design of existing programs
- typically applied in a step by step manner, each step preserving the original meaning of the program
- well established among software practitioners since the early nineties (William Opdyke, Martin Fowler, …, for OO languages at the time)
Refactoring

Rough analogies

- Whereas as a compiler translates from one language to another *(think eg. of translating from English to French)*,
- refactoring is rewriting some program in its original language *(think eg. of an editor of a newspaper rewriting/improving some text)*
Refactoring
Refactoring functional programs

some experience in our group at Kent:

- HaRe for Haskell
- Wrangler for Erlang

building upon that experience: Refactoring dependently typed programs:

- Pi-Forall for now, keeping Idris in mind
Refactoring
Refactorings broken down

- parsing
 - syntax - structure
 - carries its semantics
 - in refactoring also pragmatics: preserving things beyond that: white-space including comments, desugaring made explicit etc.

- program transformations - substitutions (using all the knowledge available)

- ensure that the meaning hasn’t changed: type checking, tests.
parsing *if*-then-else *(1)*

parsing

```plaintext
if a then b else c
```

or more generally

```plaintext
if {-i-}a{-a'-}then{-t-}b{-b'-}else{-e-}c{-c-}
```

yields

```plaintext
If (V "a") (V "b") (V "c") (Annot Nothing)
```

respectively

```plaintext
If_ (IfTok "if" (Ws "{-i-}")(Ws_ (V "a") (Ws "{-a'-}"))) (ThenTok "then" (Ws "{-t-}")(Ws_ (V "b") (Ws "{-b'-}"))) (ElseTok "else" (Ws "{-e-}")(Ws_ (V "c") (Ws "{-c-}"))) (Annot_ Nothing (Ws "")))
```
parsing *if-then-else* (2)

syntax definitions:

```haskell
data Expr t a =
  V a
  | Ws_ (Expr t a) (Ws t)
  ...
  | Lam t (Scope () (Expr t) a)
  ...
  | If (Expr t a) (Expr t a) (Expr t a) (Annot t a)
  | If_ (IfTok t) (Expr t a) (ThenTok t) (Expr t a)
    (ElseTok t) (Expr t a) (Annot t a)
```
parsing if-then-else (3)

```haskell
ifExpr = do
    reserved "if"
    a <- expr
    reserved "then"
    b <- expr
    reserved "else"
    c <- expr
    return (If a b c (Annot Nothing))

ifExpr_ = do
    i <- if_
    a <- expr_
    t <- then_
    b <- expr_
    e <- else_
    c <- expr_
    return (If_ i a t b e c (Annot_ Nothing $ Ws ""))
```
parsing *if-then-else* (4)

-- helper if_ (likewise: then_, else_)

-- originally just
-- if_ = do ws <- reserved_ "if"
-- return $ IfTok $ ws

```haskell
if_ :: (TokParsing m
  , DeltaParsing m
  )
=> m (IfTok T.Text)
```

```haskell
if_ = do ws <- reserved_ "if"
  let if' = "if"
  ws <- reserved_ if'
  return $ IfTok (T.pack if') $ ws
```

-- basic building block
```haskell
reserved_ ::: (TokenParsing m
  , Monad m
  , DeltaParsing m
  )
=> String -> m (Ws T.Text)
reserved_ s = do runUnspaced $ reserved s
```
concrete syntax

can we go back: $Absy_{Bound} \rightarrow ConcreteSyntax_{Bound}$?

- with the help of some lexical info: position etc. maybe
- not in a simple / automatic manner though, difficulties:
 - infix (mixfix) operators, like *if-then-else*
 - parenthesis/brackets (followed by white space possibly)
 - desugaring

- rethink for Idris
desugaring

\[
\lambda xy. \text{body} \quad 2
\]

\[
\lambda x. \lambda y. \text{body} \quad \text{Succ (Succ Zero)}
\]

Lams ["x", "y"] body'

\[\downarrow \text{desugar}\]

\[
\text{Nat} 2
\]

Lam "x" (Lam "y" body'')

\[\downarrow \text{desugar}\]

\[
\text{DCon "Succ" [...(DCon "Succ" [...(DCon "Zero"...)])...]}\]
binding structure

(Unbound vs.) Edward Kmett’s Bound library:

- clever (fast) representation of bound and free variables, and their scopes: generalized generalized de Bruijn indices (conversion to traditional de Bruijn is available)
- we define our expressions as monads, thus $\text{Exp } a$ (with free variables in a)
- $\text{Scope } b \text{ Exp } a$ then keeps track of bound variables in b and free variables in a (Scope is a monad transformer), but lightweight.
- really one more degree of freedom: $\text{Exp } t \ a$ with $\text{Scope } b \ (\text{Expr } t) \ a$
- examples:

```haskell
Exp \ a =
   Lam \ String \ (Scope () \ Exp \ a)
   ...

Expr \ t \ a =
   Lam \ t \ (Scope () \ (Expr \ t) \ a)
   | Lams \ [t] \ (Scope \ Int \ (Expr \ t) \ a)
   ...
```
Bound, example

```plaintext
>>> (V "x" :@ V "y") :@ V "x"
>>> abstract1 "x" $ V "x" :@ V "y" :@ V "x"
Scope ((V (B ())) :@ V (F (V "y"))) :@ V (B ()))
```
Bound, substitution

given some term \(t \), say eg.

```tcl
>>> let t = V "x" :@ V "n" :@ V "x"
```

can substitute \(t' \) for \(n \) in \(t \) (or read: substitute \(n \) by \(t' \)):

\[
t[t'/n]
\]

```tcl
>>> substitute "n" (V "t'") t (V "x" :@ V "t'") :@ V "x"
```

this can be seen as \textit{binding} a function \(\lambda n.t' \) to \(t \):

\[
t >>== \lambda n.t'
\]

```tcl
>>> t >>== (\n' -> if n'=="n" then V "t'" else return n') (V "x" :@ V "t'") :@ V "x"
```
Bound, substitution (2)

thus taking advantage of our monad, but need to define \texttt{bind} (\texttt{>>=}) beforehand:

\begin{verbatim}
instance Applicative (Exp t) where
 pure = V
 (<<*>) = ap

instance Monad (Exp t) where
 return = V
 V a >>= f = f a
 (x @@ y) >>= f = (x >>= f) @@ (y >>= f)
 Lam n s >>= f = Lam n (s >>= f)
 Type >>= _ = Type
 TrustMe (Annot ann) >>= f = TrustMe (Annot $ (>>= f) <$> ann)
...
\end{verbatim}

thereby also more fine grained control of substitution.
zipper

- navigating up and down (left and right etc.) in the syntax tree
- eg. given a variable, find it's binding occurrence up in the tree, do substitution on this subtree, and return the complete tree.
- one tree datatype that contains expressions, declarations, and modules:

  ```haskell
data Tr a =
  Exp { _exp :: Expr a a }
  | Dcl { _dcl :: Decl a a }
  | Mod { _mod :: Module a a }
  | Aa { _aa :: a }
  deriving (Show)
```

- contrary to the usual zipper implementations: a list of functions as breadcrumbs:

  ```haskell
type Zipper a = (Tr a, [Tr a -> Tr a])

left :: Refactoring m => Zipper a -> m (Zipper a)
left (Exp (l :@ r), bs) =
  rsucceed (Exp l, (\(Exp l') -> Exp $ l' :@ r) : bs)

up :: Refactoring m => Zipper a -> m (Zipper a)
up (e, b:bs) = rsucceed $(b e, bs)
```
finding syntax elements, given position information only

- rough analogy: given a text, page x, line y, column z, find the corresponding chapter, section, sentence, element in the sentence
- calculate the length of every given token, expression, decl..., and thus exact position information.
- with Foldable, Traversable derived automatically
- and Bitraversal defined once, in a straightforward manner in applicative style:

```haskell
bitraverse f g = bt where

    bt (V a)       = V <$> g a
    bt (Lam p b)   = Lam <$> f p <*> bitraverseScope f g b
    ...
    bt (Type)      = pure Type
    bt (Type_ tt ws) = Type_ <$> f tt <*> traverse f ws
    ...
```

- caveat: have to take bound variables into account: wrap, unwrap
list map vs vector map in Pi-FORALL

map : [a : Type] -> [b : Type] -> (a -> b) -> List a -> List b
map = \[a] [b] f xs . case xs of
 Nil -> Nil
 Cons y ys -> Cons (f y) (map [a][b] f ys)

map : [A:Type] -> [B:Type] -> [n:Nat] -> (A -> B) -> Vec A n -> Vec B n
map = \[A][B][n] f v .
 case v of
 Nil -> Nil
 Cons [m] x xs -> Cons [m] (f x) (map[A][B] [m] f xs)

functions having no implicit arguments, even operations like Cons are indexed by a vector size in Pi-FORALL: m here.
[arg] denotes an erasable argument
list to vector refactorings (2)

list append vs vector append in Pi-FORALL

```haskell
append : [a:Type] -> List a -> List a -> List a
append = \[a\] xs ys. case xs of
  Nil -> ys
  Cons x xs' -> Cons x (append [a] xs' ys)

append : [A :Type] ->[m:Nat] -> [n:Nat] -> Vec A m -> Vec A n -> Vec A (plus m n)
append = \[A\] [m] [n] v1 ys . case v1 of
  Nil -> ys
  Cons [m0] x xs -> Cons [plus m0 n] x (append [A] [m0][n] xs ys)
```
list to vector refactorings (3)

- the structure of the list and vector functions are the same in each case
- but we need additional information in various places, and thus additional (erasable) arguments at times
- essentially we need to know the sizes of all the vectors involved, and their operations
- these vector sizes are given as patterns typically (as mentioned above), relating eg. the sizes of input and output vectors
list to vector refactorings (4)

idea:

• require the user to provide the desired vector signatures, as these would be too difficult to guess

• calculate the body (definition) of a vector function, ie. all the vector sizes involved

• borrowing ideas from Hindley-Milner type inference: treating the vector sizes as unknown initially (similar to type variables)

• and calculate them from the given constraints, taking into account all the available information
PossiblyVar allows for various vector sizes, known and unknown, and is essentially an elaborate natural number type, that we use in various places:

```haskell
data PossiblyVar t =
  ZeroV
  | SuccV (PossiblyVar t)
  | Some t
  | VarV t
  | Sum (PossiblyVar t) (PossiblyVar t)
deriving (Eq, Ord, Show, Functor, Foldable, Traversable)
```

- A concrete vector size of \(m \) would thus be represented as `Some "m"`.
- The concrete size `succ m` as `SuccV (Some "m")`.
- The size of a vector that we haven’t decided upon yet, as `VarV "alpha"`.
- Etc.
list to vector refactorings (6)

working already:

```haskell
>>> ((\m -> (\t -> pp $ evalState (vect t) vInit) $ fromRight' $ (ezipper $ Mod $ nopos $ t2s $ m) >>= forgetZ >>= navigate [Decl 2] >>= focus) <$>) $ (runExceptT $ getModules ["samples"] "List") >>= return . last . fromRight'
Parsing File "samples/Nat.pi"
Parsing File "samples/List.pi"
map = \[Some a] [Some b] [VarV alpha] (Some f) (Some xs) .
      case xs of
        Nil -> Nil
       (Cons [VarV gamma] y ys) ->
         Cons [VarV beta] ((f y)) ((map [a] [b] f ys))
```

next steps: use unification to decide upon these vectors sizes, taking all the given constraints into account.

Unification is the process of finding an answer to the question, if two terms can be made equal, and if so, with what substitutions.