A very simple function

In []:

call(x) = x + 1

In []:

call(1)

Lets look at the code generated

In []:

@code_typed call(1)

In []:

@code_llvm call(1)

In []:

@code_native call(1)

Call with a real number
In []:
incr(2.3)

In []:
@code_typed incr(2.3)

In []:
@code_llvm incr(2.3)

In []:
@code_native incr(2.3)

Derived types

Complex number

In []:
incr(2 + 3im)

In []:
@code_native incr(2 + 3im)

In []:
@code_native incr(2 + 3.0im)

Rationals

In []:
incr(2//3)

In []:
@code_native incr(2//3)

Fibonacci Sequences
The Fibonacci Sequence is the series of numbers:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

\[F_1 = F_2 = 1 \]

\[F_n = F_{n-1} + F_{n-2} \quad \text{for } n > 2 \]

First attempt
A better version

Need BIG arithmetic to avoid overflows

```python
function fib2(n::Integer)
    @assert n > 0
    (a, b) = (big(0), big(1))
    while n > 0
        (a, b) = (b, a+b)
        n -= 1
    end
    return a
end
```

```python
fib2(402)
```

Golden Ratio
In []:

```
# Golden ratio is 1.61803398875 <=> (1 + √5)/2
# ψ = fib2(100)/fib2(99)
```

Computing a Julia Set

In []:

```julia
function juliaset(z, z0, nmax::Int64)
    for n = 1:nmax
        if abs(z) > 2 (return n-1) end
        z = z^2 + z0
    end
    return nmax
end
```

In []:

```julia
@code_native juliaset(0.0+0.0im, -0.8+0.16im, 256)
```

In []:

```julia
include("./pgmfile.jl")
```
In []:

```matlab
h = 400; w = 800;
m = darray(Int64, h, w);
c0 = -0.8+0.16im;
pgm_name = "juliaset.pgm";

tic();
for y=1:h, x=1:w
    c = complex((x-w/2)/(w/2), (y-h/2)/(w/2))
    m[y,x] = juliaset(c, c0, 256)
end
toc();
create_pgmfile(m, pgm_name);
```

In []:

```matlab
; display ./juliaset.pgm
```

Asian Option

In []:

```matlab
using Winston, Colors
```

In []:

```matlab
S0 = 100; # Spot price
K = 102; # Strike price
r = 0.05; # Risk free rate
q = 0.0; # Dividend yield
v = 0.2; # Volatility
tma = 0.25; # Time to maturity
T = 90; # Number of time steps
dt = tma/T; # Time increment
x = linspace(1,T);
```

Five random walks
In []:

```plaintext
for k = 1:5
    S = zeros(Float64, T)
    S[1] = S0;
    dW = randn(T)*sqrt(dt);
    [ S[t] = S[t-1] * (1 + (r – q – 0.5*v*v)*dt + v*dW[t] + 0.5*v*v*dW[t]*dW[t]) for t ]
    p = FramedPlot(title = "Simulation of Asian Options")
    add(p, Curve(x,S,color=parse(Colorant,"red")))
    display(p)
    readline()
end
```
function asianOpt(N::Integer, T::Integer; S0 = 100.0, K=100.0, r=0.25, q=0.0, v=0.2)

Initialize the terminal stock price matrices

@assert N > 0;
@assert T > 0;
S = zeros(Float64,N,T);
dt = tma/T;
for n=1:N
 S[n,1] = S0;
end

Simulate the stock price and compute...
... the average of terminal stock price.
A = zeros(Float64,N);
for n=1:N
 dW = randn(T)*sqrt(dt);
 for t=2:T
 z0 = (r - q - 0.5*v*v)*S[n,t-1]*dt;
 z1 = v*S[n,t-1]*dW[t];
 z2 = 0.5*v*v*S[n,t-1]*dW[t]*dW[t];
 S[n,t] = S[n,t-1] + z0 + z1 + z2;
 end
 A[n] = mean(S[n,:]);
end

Define the payoff
P = zeros(Float64,N);
for n = 1:N
 P[n] = max(A[n] - K, 0);
end

Calculate the price of the option.
price = exp(-r*tma)*mean(P);
return price
end

@elapsed asianOpt(100000,100,K=102)