The Shape of Languages

to Come
Perl =NET 9 @
JavaScnpt i O - 2 o
PHP gm{w.:;XML = © 2 ".:E
kb 880 pascal. o1 £ 3 208
§E” +Q S VisualBasiC: ou: o S
g S m CébO‘PfOt? pe-baS) (‘:\“% eg
'?, Pytcho <Yonck Aséehtib‘y:‘“% ‘ﬁg%
®="2F ~ '8 —Object-Orien 8= 0
Te2iE B0 £hortran’ ;20
R ES 9'2"'" % (<0 Lisp
o08ZH 0 (2 0l O
Vil Sue @ 8 O
Visual C-sharp saltak B 6-_

A (Brief) History of ME

Formed the company in 1982.
Previously teaching Engineering in Brighton.
Met the DEC PDP-11 and was hooked.

Over the years used between 20-30
different computer languages

..... but real passion is High Performance
Computing (HPC).

Run a number of “meetup” groups.

Synopsis of the Talk

Taxonomy of programming languages.
What is this LLVM about anyway?
How quick is quick?

A demo using Julia

New Languages for Old

Q&A

Mastering Julia

Master your analytical and programming
skills in Julia to solve complex data
processing problems

PACKT

Taxonomy of programming
languages

A programmer’s perspective
By application area

Systemic viewpoint

Systemic viewpoint

Assembly languages
Compilers
Interpreters
Intermediate code
LLVM (Jitterring)

Assembly Languages

Machine specific

1-to-1 correspondence between the
computer architecture and the code

Typically two passes through the code

Used for on-board systems and
operating system kernels

Still common with FPGA’s

1950’'s Languages

- FORTRAN (1954)
- LISP (1957)

- ALGOL (1958)

- COBOL (19509)

- JOVIAL (1959)

The computer
language paradox

Top 10 Programming Languages Currently
Used in Projects (Jan 2014)

Java

CH

PHP

C++
JavaScript
Python
Objective-C
Ruby

C

PL-SQL

"

|II|||t

Z

p P Z

/

0% 5%

10%

15% 20% 25%

30%

Most Popular Coding Languages of 2014

Lua
v .04% Bash
03% 1%
_ P Clojure
Ruby ol _— 2%
a e - a
10.6% Javascript si?sia e Ob]ezgvec

5.2%

Haskell
1.2%

ey

Go
1.5%

=

| The LLVM project
started at UIUC in 2003

Main architect was Chris Lattner, now with
Apple

Is a JIT-tering system which converts IR
code to specific assembly/machine code

Currently supports: X86, X86-64, ARM,
AArch64, Mips, SystemZ, PowerPC

http://www.llvm.org

- LLVM processing chain

Clang C/C++/ObjC LLVM
C Frontend X86 Backend = A
e —
LLVM LLVM
Fortran -#=| llvm-gce Frontend Optimizer PowerPC Backend | ™ PowerPC
e —
LLVM
Haskell | GHC Frontend MR (vmiR| ARM Backend -» ARM

What systems are now
using LLVM?

As a compiler:
Clang, Swift, GNU, Haskell, Ruby
LDC, Clasp, LLgo

As a “bolt-on” module / extension
Python (Numba), Tcl

As a complete system
Julia, Javascript (V8), LuadIT, Rust
SML, Pure

http://llvm.org/devmtg/2016-01/slides/
fosdem-2016-llvm.pdf

How Fast is Fast?

Regular derivative (stock option) pays out at
the termination of the contract.

There is a formula based on the work of
Black & Scholes in the 1970’s

A up or down turn at the end of the contract
period can be disastrous

The Asian option uses an average price over
the contract rather than the final one

This is computationally intense

140

120

100

80

&0

"Simple” Asian Option

W e e . . e S R

Average

10

Payoul

zeros (Float64 ,N,T)
zeros (Float64,N)

S
A
for n=1:N
S[n,1] = SO
dW = randn (T) *sqrt (dt)
for t=2:T
z0 (r - g - 0.5*%*v*v)*S[n,t-1]*dt
z1l v*S[n,t-1]*dwW[t]
z2 = 0.5*v*v*S[n,t-1]*dW[t] *dW[t]
S[n,t] = S[n,t-1] + z0 + z1 + z2
end
A[n] = mean(S[n, :])
end

P = zeros (Float64,N)
[P[n] = max(A[n] - K, 0) for n = 1:N]
price = exp(-r*tma) *mean (P)

Asian Benchmarks

Results for 100,000 runs of 100 steps, (c ~ 0.73 s)

1.0 1.681
m 1.41 1.680
32.67 1.671
_ 154.3 1.646
789.3 1.632

Samsung RV711 laptop with an i5 processor and
4Gb RAM running Centos 6.5 (Final)

DEMO TIME

L ISP = Once establised programming

g W8 Janguages are long lived but
PG\ the time at the top is short!

Advances in hardware and software
may new approaches possible.

T —
\v,r

”3 such as cloud computing.

. Emergence of new environments

' Changes in application areas, such
as big data and mobile apps.

el
ol AR

Sinie T 31" ~ -" 23 . .
Bl 8 Shift to analyst coding rather than
" 4¥4, specialist programmers.

The Two Language Problem? 00

Because of this dichotomy, a two-tier compromise is standard:

» for convenience, use a scripting language (Matlab, R, Python)

» but do all the hard stuff in a systems language (C, C++, Fortran)

Pragmatic for many applications, but has drawbacks

» aren’t the hard parts exactly where you need an easier language?
» forces vectorization everywhere, even when awkward or wasteful

» creates a social barrier — a wall between users and developers

| ‘ Quo Vadis LLVM?

http://llvm.org

1

Dragonegg (code generation for GCC)
LLDB (native debugger)

Libc++ ABI (including C++11)
OpenMPI support

Vmkit (JVM and .NET)

Libclc (OpenCL)

Kee (intelligent bug finder)

The Genie is out of the bottle,
things will not be the same again.

All (new) major languages in the last five
years incorporate some form of JIT-
tering.

LLVM project is the main O/S and has
an exciting agenda planned.

Parallelism and HPC is becoming
iIncreasing important.

Never again will languages as slow as
Matlab, R and (even) Python be created
and certainly not paid for.

skee w
8= <MeSiE nkosi ='3 manana ahsante
spas merkzi - §kmlsou 5"" s aﬁlb:r S8 ""m%md'ggkewol m
b Sl supas shukria= g trugéré
i au .2 fcl‘:okranés mngwechobngadomurakﬁzc kOszGnOm '-
ziekuje oo

S Mu umescddh '
e I;m"" e g fai!S

y 5 yckenielemm
g e § AL e arigato -2

2 s £
wgl‘:lmbedankt 2 efh a rl St 0 -“ waybale daku em
salamat E shukran tanenurt
: d a n k e "‘“’"m wado

barkal g
)
tack zikomo tanmirtmisaotra

pa

ar am

danki sul

»
8
ba
m
@

nmczrides

mahalo
shakkran

