
The Shape of Languages  
to Come

A (Brief) History of ME
Formed the company in 1982.
Previously teaching Engineering in Brighton.
Met the DEC PDP-11 and was hooked.
Over the years used between 20-30
different computer languages …..
….. but real passion is High Performance
Computing (HPC).
Run a number of “meetup” groups.

Synopsis of the Talk

Taxonomy of programming languages.
What is this LLVM about anyway?
How quick is quick?
A demo using Julia
New Languages for Old
Q & A

Taxonomy of programming
languages

A programmer’s perspective  

By application area  

Systemic viewpoint

Systemic viewpoint

Assembly languages
Compilers
Interpreters
Intermediate code
LLVM (Jitterring)

Assembly Languages

Machine specific
1-to-1 correspondence between the
computer architecture and the code
Typically two passes through the code
Used for on-board systems and
operating system kernels
Still common with FPGA’s

1950’s Languages  

➢ FORTRAN (1954)
➢ LISP (1957)
➢ ALGOL (1958)
➢ COBOL (1959)
➢ JOVIAL (1959)

The computer
language paradox

The LLVM project  
started at UIUC in 2003

Main architect was Chris Lattner, now with
Apple
Is a JIT-tering system which converts IR
code to specific assembly/machine code
Currently supports: X86, X86-64, ARM,
AArch64, Mips, SystemZ, PowerPC

http://www.llvm.org

LLVM processing chain

What systems are now  
using LLVM?

As a compiler: 
Clang, Swift, GNU, Haskell, Ruby 
LDC, Clasp, LLgo

As a “bolt-on” module / extension  
Python (Numba), Tcl

As a complete system 
Julia, Javascript (V8), LuaJIT, Rust 
SML, Pure  

http://llvm.org/devmtg/2016-01/slides/
fosdem-2016-llvm.pdf

How Fast is Fast?

Regular derivative (stock option) pays out at
the termination of the contract.
There is a formula based on the work of
Black & Scholes in the 1970’s
A up or down turn at the end of the contract
period can be disastrous
The Asian option uses an average price over
the contract rather than the final one
This is computationally intense

“Simple” Asian Option

S = zeros(Float64,N,T)  
A = zeros(Float64,N)  
 
for n=1:N  
 S[n,1] = S0  
 dW = randn(T)*sqrt(dt)  
 for t=2:T  
 z0 = (r - q - 0.5*v*v)*S[n,t-1]*dt  
 z1 = v*S[n,t-1]*dW[t]  
 z2 = 0.5*v*v*S[n,t-1]*dW[t]*dW[t]  
 S[n,t] = S[n,t-1] + z0 + z1 + z2  
 end  
 A[n] = mean(S[n,:])  
end

P = zeros(Float64,N)  
[P[n] = max(A[n] - K, 0) for n = 1:N]  
price = exp(-r*tma)*mean(P)

Asian Benchmarks

Language Timing (c = 1) Asian Option
c 1.0 1.681
julia 1.41 1.680
python (v3) 32.67 1.671

R 154.3 1.646
Octave 789.3 1.632

Results for 100,000 runs of 100 steps, (c ~ 0.73 s)

Samsung RV711 laptop with an i5 processor and
4Gb RAM running Centos 6.5 (Final)

Once establised programming
languages are long lived but
the time at the top is short!

Advances in hardware and software
may new approaches possible.
Emergence of new environments
such as cloud computing.
Changes in application areas, such
as big data and mobile apps.
Shift to analyst coding rather than
specialist programmers.

Quo Vadis LLVM?  
http://llvm.org

❖ Dragonegg (code generation for GCC)
❖ LLDB (native debugger)
❖ Libc++ ABI (including C++11)
❖ OpenMPI support
❖ Vmkit (JVM and .NET)
❖ Libclc (OpenCL)
❖ Kee (intelligent bug finder)

The Genie is out of the bottle,
things will not be the same again.
All (new) major languages in the last five
years incorporate some form of JIT-
tering.
LLVM project is the main O/S and has
an exciting agenda planned.
Parallelism and HPC is becoming
increasing important.
Never again will languages as slow as
Matlab, R and (even) Python be created
and certainly not paid for.

