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DISCLAIMER
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# This lecture benefitted from the valuable contributions of many
colleagues at Yahoo and elsewhere.
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COMPUTATIONAL ADVERTISING



INTRODUCTION TO ADVERTISING

Advertising: form of marketing communication used in order to
persuade an audience to take an action.

# A publisher creates media.
# An audience reads, views, listens, ... such media.
# The publisher makes inventory available, i.e. ad spaces.
# An advertiser buys ad spaces to insert advertising creatives

that target the audience.

Advertiser campaign goals vary:

# Brand Advertising: create a distinct and favorable brand
(and/or product/campaign) image, e.g. Global Recall Points
(GRP) ...

# Direct Marketing: obtain a direct response from the audience,
e.g. conversions, installs, purchases, ...
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A GAME OF MULTIPLE OBJECTIVES

# Publishers’ objective is to optimize short-term revenue (yield)
and long-term revenue (user engagement):
◦ Percentage of inventory sold, e.g. sell-through-rate.
◦ Revenue per unit of inventory, e.g. revenue per mille, revenue

per search.
◦ Media reach, e.g. readership, page views, number of searches,

minutes online.
# Advertisers’ objective is to optimize budgets’ ROI and

volume:
◦ Maximize GRP lift per campaign.
◦ Reduce cost per acquisition.
◦ Ensure minimum audience reach.
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EVOLUTION OF ONLINE ADVERTISING: THE BEGINNINGS

1. Initially, property owners sold media inventory banner
advertising slots in large exclusivity contracts, e.g. Yahoo
Sports sells all daily impressions to Nike. To buy
sports-enthusiasts, one buys Yahoo Sports, ESPN, etc. So far,
same as the printed world.

2. Yahoo Sports grows in readership more than any advertiser
can buy; Yahoo slices the inventory and enters into upfront
contracts with multiple advertisers, providing volume
guarantees to each of them. Premium guaranteed contracts
ensure minimum delivery, within a given timeline, and
associate penalties of under-delivery.

3. Online media competitors start appearing, and eventually offer
access to similar audience. Yahoo starts offering "behavioral
targeting" to allow advertisers to better select their audience (a
more targeted audience results in higher ROI, more GRP-lift
and higher conversion rates).
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EVOLUTION OF ONLINE ADVERTISING: THE AD NETWORKS

4. Large media owners like Yahoo create "ad networks" to
package and sell an audience across multiple properties.

5. Search and contextual advertising appears and allows direct
response advertisers to optimize for clicks and conversions.

6. Advertisers start buying in portfolios across multiple media and
ad networks, across display, search and video; they optimize
global media spent.

7. Publishers allocate part of their inventory to exclusive direct
sales deals and part of the inventory to the ad network(s). All
are upfront contracts that carry a pricing premium for the
guarantees. Publishers end up with "remnant" inventory.
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EVOLUTIONOFONLINE ADVERTISING: PROGRAMMATIC BUYING

8. Ad exchanges appear as a spot market to liquidate remnant
inventories. Ad exchanges use Real-Time Bidding to
programmatically connect multiple publishers (supply) and
advertisers (demand) together: every impressions at a
publisher is an auction, with multiple advertisers bidding per
impression.

9. Advertisers get an opportunity to peak into the impression and
cherry-picking appears. Cookie syncing, data mapping, data
cooking allows tracking and building audience profiles. Data
Management Platforms appear and provide intelligence to the
bidders to buy the right audience, at the right time, at the
cheapest possible price.

10. Large media publishers get price eroded.
11. We are currently seeing a move from large, upfront, premium

contracts with guarantees based on sales rate cards, to an
efficient, real-time, programmatic spot market.
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THE TASKS OF COMPUTATIONAL ADVERTISING

# Identify and track users online (and offline) across media.
# Cluster users to optimize for clicks and conversions.
# Forecast supply to minimize under-delivery penalties.
# Select the "best" representation for users and ads.
# Extract query intent, publisher page context, etc.
# Design pricing to motivate advertisers to bid truthfully.
# Select the ads with highest yield.
# Select the ads with highest quality.
# Ensure a "fair distribution" of impressions.
# Dynamically optimize the ad creative.
# Decide when to bid.
# ...
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COMPUTATIONAL ADVERTISING IN COMPUTER SCIENCE

New scientific sub-discipline bringing together:

# Microeconomics
# Game theory
# Auction theory
# Mechanism design
# Information retrieval
# Natural language processing
# Large scale systems engineering
# Computer vision
# Machine learning
# ...
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SO, WHAT IS COMPUTATIONAL ADVERTISING?

Optimization program: find the "best" advertising,

# Given a user, e.g. an online profile associated with a cookie.
# Given a context, e.g. search query, publisher page, video

stream, etc.
# Given a corpus of ad offers and contracts, e.g. sponsored

search, premium display banners, video pre-rolls, etc.
# Subject to a set of publisher yield constraints.
# Subject to a set of marketplace constraints.
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A CONCRETE FORMULATION

For every impression:

1. select the top-N ad offer candidate slate (advertiser specific,
position independent),

2. ranked for short-term revenue (eCPM),
3. discounted for negative externalities (qs).

eCPMk � bidk · pCTRk

ark � eCPMk · qsk

# eCPMk effective cost-per-mille (revenue ex-TAC)
# ark ad score (rank) for the ad offer in position k in the slate,
# bidk maximum cost per click advertiser is willing to pay,
# pCTRk predicted click-through rate,
# qsk quality score for the ad, capturing future negative

externalities, pre- and post-click.
14



GENERALIZED SECOND PRICE AND CLICK-THROUGH RATES

Given the ranked slate of ads:

ar1 < ar2 < ... < ark < ... < arN

we price ad offer ark at the minimum that advertiser would have to
pay to outbid the next position offer with ark+1:

PPCk · pCTRk · qsk � bidk+1 · pCTRk+1 · qsk+1

so the effective price-per-click is:

PPCk � bidk+1 ·
pCTRk+1

pCTRk
·

qsk+1

qsk
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THE IMPORTANCE OF MACHINE LEARNING

Accurate Predictions: It’s Down to the Money

Click-Through Rate andQuality Score estimation biases have huge
impact on marketplace efficiency (operator), yield (publisher), pric-
ing (advertiser) and long-term user retention/satisfaction
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FOCUSING ON CLICK PREDICTION

Conditional probability, unknown to us:

pCTR � P(click |user, context , ad)

Model clicks and relevance scores using attributes from:

# User
◦ Geo / location
◦ Behavior (views, searches, clicks ...)
◦ Techno- and demographic (age, gender, device, network ...)

# Context
◦ Page content (words, phrases, category, ...)
◦ Meta information (URL, referral query, web rank, ...)

# Ad
◦ Creative (title, abstract, URL, ...)
◦ Bid terms
◦ Categories
◦ Targeting geo
◦ Bid amount 17



CLICK MODELING

Feature engineering:

# Unigrams, Phrases, Categories, Geo, Bidterm, keywords
# Weights adjust the contribution of each score to the final score
# User/page and ad are represented by vectors in different

spaces
# Score is the cosine distance between vectors in each space
# Final score is linear combination of individual scores

Click modeling score is the estimate P(click | user, context, ad):

# Intensity of word or phrases based on tf-idf.
# Intensity of categories based on categorizer score.
# Editorially judged page-ad pairs, optimize weights.
# Rule weights are learned during training.
# Rules can match features from channels of query and

channels of ad.
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MACHINE LEARNING



GENERALIZATION ERROR

A training example is a pair (x , y) composed of an input vector of
features x and a scalar or label output y. In the binary case of
clicks (−1 no click; 1 click):

x → y ∈ {−1, +1}

Given an unseen example, our objective is to estimate the output:

x → ŷ

The quality of a learning system is determined by the generalization
error (E) [and a loss function (L)]:

En ( f ) �
∫

L( ŷ , y)dp(y) �
∫

L( fw (x), y)dp(x , y)

Our objective is to find the function that minimizes E.
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OPTIMIZATION PROBLEM

The solution to the learning problem is the function fw (x) with a
weight vector such that:

ŵ � argmin
w

*
,

n∑
i�1

L( fw (xi), yi) + λR(w)+
-

where we introduce R and λ for regularization (control to avoid
overfitting the parameters).

Much machine learning work focuses on problems of this form (e.g.
Adaline, Perceptron, K-Means, SVM, Lasso, ...), and it’s also
applicable to other problems such as large-scale matrix
factorization (LDA, LFA, random indexing, etc.), collaborative
filtering, deep networks, etc.
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EXAMPLE OPTIMIZATION PROBLEMS

For example, an Adaline learns by selecting a family of linear
functions, and minimizing the mean square errors:

ŵ � argmin
w

n∑
i�1

(yi − wT xi)2

In the case of ad click prediction, it’s common to estimate the click
probability by maximizing the entropy (logistic regression). We
assume the regression is a sigmoid (logistic) function, and we use
L2 regularization. The weight vector is in this case:

ŵ � argmin
w

*
,

n∑
i�1

lo g(1 + exp(−yi wT xi)) + λ2 ‖w‖
2+
-
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BATCH LEARNING METHODS: GRADIENT DESCENT

GD is an iterative batch method that updates in each step the
weight vector wk in the direction of the gradient of En ( fw) by a
small amount εk (learning step):

wk+1 � wk − εk
1
n

n∑
i�1
∇wL(xi , yi , wk )

# GD is slow but accurate to converge.
# Calculating the gradient is computationally burdening since we

need to estimate the gradient over the entire training set at
every step of the algorithm until we reach convergence.

# Industrially, we use L-BFGS (limited memory BFGS), a method
similar to GD.
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ONLINE LEARNINGMETHODS: STOCHASTICGRADIENTDESCENT

The SGD algorithm estimates the gradient on the basis of a
randomly picked example:

wk+1 � wk − εk∇wL(xk , yk , wk )

# SGD converges faster than GD and can escape local minimum
and works for infinite training sets (e.g. datastreams).

# SGD can be easily parallelized by splitting the weight vectors
into different CPU cores.

# Given the sequential nature of the SGD algorithm, the ability to
scale is bound by the maximum number of cores and available
memory a single computer.
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HYBRID TRAINING METHODS

Agarwal et Al., A Reliable Effective Terascale Linear
Learning System

Effect of initializing the L-BFGS optimization by an average solution
from online runs on individual nodes. Test auPRC for 4 different
learning strategies. Note that the online and hybrid curves overlap
during the warmstart phase (of either 1 or 5 online passes).
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THE SCALING CHALLENGES

Scale:

# 1,000,000,000 examples
# 100,000,000 features
# 10,000 models
# 10 algorithms

Speed:

# Naïve solutions spend days/hours in model training
# Items discovery within minutes, e.g. breaking news
# Temporal nature of user interests, e.g. query intent
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THE BIG-DATA MACHINE LEARNING
TOOLSET



BIG-DATA MACHINE LEARNING
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APACHE HADOOP

http://hadoop.apache.org

# Popular framework for
running applications on
large cluster built of
commodity hardware

# Designed for very high
throughput and reliability

# YARN resource manager
supports Map/Reduce, Tez
and beyond

29



APACHE SPARK

http://spark.apache.org

# Fast and expressive cluster
computing system
compatible with Apache
Hadoop

# Support general execution
DAGs; Include iterative
programming

# Resilient distributed
datasets (RDDs)

# In-memory storage
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APACHE STORM

http://storm.apache.org

# Hadoop for Realtime
# Distributed, fault-tolerant,

and high-performance
streaming computation

# Top-level Apache project
since Sept. 2014
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DESIGN PATTERNS ENABLED



BATCH TRAINING: 1,000+ MODELS

Hadoop: Training data for each model could be loaded into a single
machine.
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BATCH TRAINING: LARGE TRAINING DATASET

Hadoop + MPI AllReduce: Training data are too large to be loaded
into a single machine.
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BATCH TRAINING: LARGE DATASET AND 1000+ MODELS

Example: ad landing page image classification.
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BATCH TRAINING: MEDIUM BUT DISTRIBUTED DATASET

Spark: behavioral targeting segments.
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ONLINE TRAINING: SUB-MINUTE MODEL FRESHNESS

Storm: search query intent.
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HYBRID TRAINING: RE-TRAIN AT SPEED

# Bootstrap models via batch
learning from large
datasets, update models
via realtime learning from
latest events

# Bootstrap learning online,
switch to batch for accuracy

# ML in Hadoop + Storm

# ML in Spark + Storm
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HYBRID TRAINING: LARGE SCALE AT SPEED

Dean et Al., Large Scale Distributed Deep Networks

# billions of features per model; millions of operation per second
# asynchronous gradient descent: no consistency or order

guarantees
# practically, it works for non-linear, non-convex, global minima
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HYBRID TRAINING: PARAMETER SERVER ON HADOOP
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CONCLUSION



CONCLUSION

# Scalable machine learning
is critical for big-data tech
evolution.

# Computational advertising
(and search) is pushing the
boundaries of machine
learning.

# It’s possible to achieve
large scale machine
learning with an open
source strategy; Yahoo
committers:
◦ Apache Hadoop 15
◦ Apache Storm 5
◦ Apache Spark 4
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