
Comput ing at Scale: Meet Hadoop

Edgar Meij

Outline

2

▪ Background
› key ideas and intuitions
› programming paradigm

▪ Hadoop in action
▪ The broader picture
› Hadoop ecosystem
› current developments and outlook

▪ Resources

3

Background

Data data data

4

▪ Amount of data created and replicated in 2012: ~2.8 ZB
› 1 Zettabyte = 1 Billion TB

▪ LHC generates ~15 PB per year
▪ Google processes 20 PB / day (2008)
▪ Facebook
› 500+ TB of new data added / day (2012)
› 60+ PB of storage

▪ etc…

640K
ought to be enough for

anybody.

Parallel computing is non-trivial

5

▪ Scheduling, synchronization, data distribution, fault tolerance, …
▪ Architectural issues…
▪ Programming models (message passing, shared memory, …)
▪ Deadlocks, racing conditions, queues, …
▪ I want to develop/implement new algorithms, not debug such issues

What is the (or “a”) solution?

6

▪ Hide system-level details: separate the what from the how
› specify the computation that needs to be performed, the execution framework handles

the actual execution

▪ Avoid random access
▪ Move processing to the data
▪ Scale out instead of up: ideal scaling characteristics
› twice the data, twice the running time
› twice the resources, half the running time
› why can’t we typically achieve this?
• synchronization requires communication and communication kills performance

7

“Work”

w1 w2 w3

r1 r2 r3

“Result”

“worker” “worker” “worker”

Partition

Combine

MapReduce (2004)

8

▪ Typical large data problem
› iterate over (a large number of) records
› extract something of interest from each –– Map
› shuffle and sort intermediate results
› aggregate intermediate results –– Reduce
› generate final output

▪ Key idea
› provide a functional abstraction for these two operations

MapReduce

9

▪ Developer specifies two functions: 
map (k, v) → <k’, v’>*  
reduce (k’, v’) → <k’, v’>*
› All values with the same key are sent to the same reducer

▪ The execution framework handles everything else…

Word count example, in pseudocode

10

Map (String linenumber, String text):	
	 for each word w in text:	
	 	 Emit(w, 1);	
!
Reduce (String term, Iterator<Int> values):	
	 int sum = 0;	
	 for each v in values:	
	 	 sum += v;	
	 	 Emit(term, sum);

11

map map map map

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

MapReduce

12

▪ Developer specifies two functions: 
map (k, v) → <k’, v’>*  
reduce (k’, v’) → <k’, v’>*
› All values with the same key are sent to the same reducer

▪ The execution framework handles everything else…

MapReduce

13

▪ Developer specifies two functions: 
map (k, v) → <k’, v’>*  
reduce (k’, v’) → <k’, v’>*
› All values with the same key are sent to the same reducer

▪ The execution framework handles everything else…
▪ Not quite… you can also specify…
▪ partition (k’, number of partitions) → partition for k’
› Often a simple hash of the key – e.g., hash(k’) mod n – that divides up key space for

parallel reduce operations

▪ combine (k’, v’) → <k’, v’>*
› Mini-reducers that run in memory after the map phase, used as an optimization to

reduce network traffic

14

combine combine combine combine

b a 1 2 c 9 a c 5 2 b c 7 8

partition partition partition partition

map map map map

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

c 2 3 6 8

MapReduce runtime

15

▪ Handles
› scheduling: assigns workers to map and reduce tasks
› “data distribution”
› synchronization: gathers, sorts, and shuffles intermediate data
› errors and faults: detects worker failures and restarts

▪ On top of a distributed FS

MapReduce

16

▪ MapReduce can refer to
› the programming model
› the execution framework (aka “runtime”)
› the specific implementation

▪ Google has a proprietary implementation in C++
▪ Hadoop is an open-source implementation in Java

› original development led by Yahoo
› now an Apache open source project
› emerging as the de facto big data stack
› big software ecosystem

▪ Lots of custom research implementations
› for GPUs, cell processors, etc.
› includes variations of the basic programming model

What is Hadoop?

17

map map map map

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

What is Hadoop?

18

▪ A simple distributed programming model (MapReduce)
▪ Distributed file system (HDFS)
▪ Plus some admin

DFS

19

▪ Don’t move data to workers… move workers to the data!
› store data on the local disks of nodes in the cluster (and replicate)
› start up the workers on a node that has the data local

▪ A distributed file system is the answer
› GFS (Google File System) for Google’s MapReduce
› HDFS (Hadoop Distributed File System) for Hadoop

GFS/HDFS

20

▪ Files stored as chunks of a fixed size (64MB)
▪ Reliability through replication: each chunk 3+ times replicated
▪ Single master to coordinate access, keep metadata
› simple centralized management

▪ Simple API
› push some of the issues (e.g., data layout) to the client

Reading files

21

Rack1! Rack2! Rack3! RackN!

read file! (fsimage/edit)!
Hadoop Client!

NameNode! SNameNode!

return DNs, !
block ids, etc. !

DN | TT!
DN | TT!
DN | TT!

DN | TT!
DN | TT!
DN | TT!

DN | TT!
DN | TT!
DN | TT!

DN | TT!
DN | TT!
DN | TT!

checkpoint!

heartbeat/!
block report!read blocks!

Writing files

22

Rack1! Rack2! Rack3! RackN!

request write! (fsimage/edit)!
Hadoop Client!

NameNode! SNameNode!

return DNs, etc. !

DN | TT!
DN | TT!
DN | TT!

DN | TT!
DN | TT!
DN | TT!

DN | TT!
DN | TT!
DN | TT!

DN | TT!
DN | TT!
DN | TT!

checkpoint!

block report!write blocks!

replication pipelining!

Namenodes

23

▪ Manage the file system namespace
› holds file/directory structure, metadata, file-to-block mapping, access permissions, etc.

▪ Coordinate file operations
› directs clients to datanodes for reads and writes
› no data is moved through the namenode

▪ Maintain overall health
› periodic communication with the datanodes (heartbeats)
› block re-replication and rebalancing
› garbage collection

Running jobs

24

Rack1! Rack2! Rack3! RackN!

Hadoop Client!

JobTracker!

DN | TT!
DN | TT!
DN | TT!

DN | TT!
DN | TT!
DN | TT!

DN | TT!
DN | TT!
DN | TT!

DN | TT!
DN | TT!
DN | TT!

submit job!

deploy job!

part 0!

map!

reduce!

shuffle!

The execution framework handles everything else…

25

▪ The framework handles
› scheduling: assign workers to map and reduce tasks
› “data distribution”: move processes to data
› synchronization: gather, sort, and shuffle intermediate data
› errors and faults: detect worker failures and restarts

▪ Limited control over data and execution flow
› Everything is expressed in m, r, c, p

▪ You don’t know
› where mappers and reducers run
› when a mapper or reducer begins or finishes
› which input a particular mapper is processing
› which intermediate key a particular reducer is processing

26

Hadoop in action

An example: counting words

27

28

29

30

31

$ hadoop jar wordcount.jar org.myorg.WordCount $in $out
!
...
!

32

33

34

35

36

$ hadoop jar wordcount.jar org.myorg.WordCount $in $out
!
...
!
$ hdfs dfs -cat $out/part-r-00000
Bye 1
Goodbye 1
Hadoop 2
Hello 2
World 2

Hadoop Streaming…

37

▪ Allows MapReduce jobs with any executable/script as the mapper and/
or the reducer

▪ Uses pipes
!
$ cat myInputDirs/* | wc -w	
…	
$ hadoop jar $HADOOP_HOME/hadoop-streaming.jar \	
	 -input myInputDirs \	
	 -output myOutputDir \	
	 -mapper /bin/cat \	
	 -reducer ‘/bin/wc -w’

38

Hadoop ecosystem

Projects “around” Hadoop

39

▪ Ambari
› Managing Hadoop clusters

▪ Cassandra
› “key-value store” (created by Facebook, used by Netflix, a.o.)

▪ Hbase
› ~BigTable (used by Facebook, Twitter (non-prod), Mendeley, Y, a.o.)

▪ Hive
› data warehousing (created by Facebook, used by Amazon, Netflix, Y, a.o.)

▪ Mahout
› Machine learning for Hadoop

▪ Pig
▪ Zookeeper

› Managing Hadoop clusters

Mahout

40

▪ Machine learning @ Hadoop
› distributed or otherwise scalable algorithms
› focusing on collaborative filtering, clustering, and classification

▪ Apache licensed
▪ Lots of “early” implementations
▪ JBOA

Hbase

41

▪ Distributed, wide-column store
› random, realtime read/write access to large quantities of sparse data
› non-relational
› compression/Bloom filters
› ~BigTable

▪ Based on HDFS
› SPOFs: HDFS Name Node and HBase Master (unlike Cassandra)

▪ APIs: Hadoop, Java, REST, Avro, thrift

Pig

42

▪ High-level “platform” for creating MapReduce jobs
› abstracts programming from MapReduce into a high-level notation
› similar to SQL for DBs – Pig is more procedural than (declarative) SQL
› developed at Yahoo Labs in ’06

▪ Can be extended with user-defined functions
› Java, Python, JavaScript, Ruby, or Groovy

▪ Four modes
› interactive (shell) vs batch (script)
› local (single machine) vs mapreduce

▪ Users specify script in “Pig Latin”
› ~ specifying a query execution plan
› Pig translates this into MapReduce jobs

Pig Latin

43

A = load 'input.txt';
B = foreach A generate
 flatten(TOKENIZE((chararray)$0)) as word;
C = group B by word;
D = foreach C generate COUNT(B), group;
store D into 'wordcount.txt';

44

Current developments

Hadoop versioning…

45

▪ Typical version-controlled setup
› trunk: main codeline
› large features developed on branches: expected to merge with trunk at some later

point in time
› candidate releases branched from trunk

▪ However…

46

47

Issues with Hadoop 1

48

▪ Limited to 4000 nodes per cluster
▪ JobTracker = bottleneck, single POF
▪ Only one HDFS namespace
▪ Static map and reduce slots per node
▪ Only MapReduce jobs
› although some applications circumvent this

Hadoop 2

49

▪ Up to 10,000 nodes per cluster
▪ Multiple HDFS namespaces
▪ API compatible with Hadoop 1
▪ Beyond Java
▪ YARN

YARN (Yet Another Resource Negotiator)

50

▪ Introduced in Hadoop 0.23 (and is also in 2.x)
▪ Divides the two major functions of the JobTracker into:
› ResourceManager – manages the global assignment of compute resources to

applications
• supports hierarchical application queues
• pure scheduler: no monitoring or tracking of status for the application
• resource requests include memory, CPU, disk, network etc.

› ApplicationMaster – manages an application’s scheduling and coordination
• negotiates resource containers, launches tasks, tracks their status, and handles failures

▪ NodeManager manages the user processes on a machine
› launches the applications’ containers, monitors their resource usage (cpu, memory,

disk, network), reports to the ResourceManager

Reading files

51

Rack1! Rack2! Rack3! RackN!

read file!

fsimage/edit copy!
Hadoop Client! NN1/ns1!

SNameNode!
per NN!

return DNs, !
block ids, etc. !

DN | NM!
DN | NM!
DN | NM!

DN | NM!
DN | NM!
DN | NM!

DN | NM!
DN | NM!
DN | NM!

DN | NM!
DN | NM!
DN | NM!

checkpoint!

register/!
heartbeat/!
block report!

read blocks!

fs sync! Backup NN!
per NN!

checkpoint!

NN2/ns2! NN3/ns3! NN4/ns4!

or!

ns1! ns2! ns3! ns4!

dn1, dn2!
dn1, dn3!

dn4, dn5! dn4, dn5!

Block Pools!

Writing files

52

Rack1! Rack2! Rack3! RackN!

request write!

Hadoop Client!

return DNs, etc. !

DN | NM!
DN | NM!
DN | NM!

DN | NM!
DN | NM!
DN | NM!

DN | NM!
DN | NM!
DN | NM!

DN | NM!
DN | NM!
DN | NM!

write blocks!

replication pipelining!

fsimage/edit copy!
NN1/ns1!

SNameNode!
per NN!

checkpoint!

block report!

fs sync! Backup NN!
per NN!

checkpoint!

NN2/ns2! NN3/ns3! NN4/ns4!

or!

Running jobs

53

RackN!

NodeManager!

NodeManager!

NodeManager!

Rack2!

NodeManager!

NodeManager!

NodeManager!

Rack1!

NodeManager!

NodeManager!

NodeManager!

C2.1!

C1.4!

AM2!

C2.2! C2.3!

AM1!

C1.3!

C1.2!

C1.1!

Hadoop Client 1!

Hadoop Client 2!

create app2!

submit app1!

submit app2!

create app1!

ASM! Scheduler!
queues!

ResourceManager!

status report!

Storm

54

▪ Stream-based processing
› distributed, realtime computation
› usable for analytics, online machine learning, continuous computation (sensor data,

machine data, query log data, etc.)

▪ Based on
› Topologies (~ MapReduce job)
› Streams: unbounded sequence of tuples that is processed and created in parallel
› Spouts: a source of streams in a topology
› Bolts: do the processing on streams

▪ Moving to YARN
▪ Used by Twitter, Y, a.o.

Giraph

55

▪ Iterative graph processing system using high scalability
› ~ Pregel
› bulk synchronous parallel processing

▪ Runs on YARN
▪ Used by Facebook, Y, a.o.
› analyze one trillion edges using 200 nodes in 4 minutes

Spark

56

▪ Provides primitives for in-memory cluster computing
› supports streaming
› Java, Scala or Python
› speaks YARN (but not tied to Hadoop 2)

▪ Allows loading data into a cluster's memory and query it repeatedly
› makes it well-suited to machine learning algorithms – 10x faster than Mahout
› limited to physical memory sizes (although spillover to disk possible)

▪ Used by Baidu, Y, a.o.
▪ MLbase/MLlib
› Machine learning based on Spark

Finally, some notes

57

▪ Resources
› *Lots* of resources/courses/software/… can be found online
› Cloudera, Hortonworks, …
› Not just for industry
• Amazon Elastic MapReduce

– also Hadoop streaming

› Main Hadoop conference: http://hadoopsummit.org/
• similar ones for HBase, Hive, Pig, …

http://hadoopsummit.org/

Questions?

58

We Are Hiring!
http://careers.yahoo.com/ emeij@yahoo-inc.com

http://edgar.meij.pro

