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› key ideas and intuitions 
› programming paradigm 

▪ Hadoop in action 
▪ The broader picture  
› Hadoop ecosystem 
› current developments and outlook 

▪ Resources
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Background



Data data data
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▪ Amount of data created and replicated in 2012: ~2.8 ZB  
› 1 Zettabyte = 1 Billion TB 

▪ LHC generates ~15 PB per year 
▪ Google processes 20 PB / day (2008) 
▪ Facebook 
› 500+ TB of new data added / day (2012) 
› 60+ PB of storage 

▪ etc…

640K 
ought to be enough for 

anybody.



Parallel computing is non-trivial
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▪ Scheduling, synchronization, data distribution, fault tolerance, … 
▪ Architectural issues… 
▪ Programming models (message passing, shared memory, …) 
▪ Deadlocks, racing conditions, queues, … 
▪ I want to develop/implement new algorithms, not debug such issues



What is the (or “a”) solution?
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▪ Hide system-level details: separate the what from the how  
› specify the computation that needs to be performed, the execution framework handles 

the actual execution 

▪ Avoid random access 
▪ Move processing to the data 
▪ Scale out instead of up: ideal scaling characteristics 
› twice the data, twice the running time 
› twice the resources, half the running time 
› why can’t we typically achieve this? 
• synchronization requires communication and communication kills performance
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“Work” 

w1 w2 w3 

r1 r2 r3 

“Result” 

“worker” “worker” “worker” 

Partition 

Combine 



MapReduce (2004)
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▪ Typical large data problem 
› iterate over (a large number of) records 
› extract something of interest from each –– Map 
› shuffle and sort intermediate results 
› aggregate intermediate results –– Reduce 
› generate final output 

▪ Key idea 
› provide a functional abstraction for these two operations



MapReduce
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▪ Developer specifies two functions: 
map (k, v) → <k’, v’>*  
reduce (k’, v’) → <k’, v’>* 
› All values with the same key are sent to the same reducer 

▪ The execution framework handles everything else…



Word count example, in pseudocode
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Map (String linenumber, String text):	
	 for each word w in text:	
	 	 Emit(w, 1);	
!
Reduce (String term, Iterator<Int> values):	
	 int sum = 0;	
	 for each v in values:	
	 	 sum += v;	
	 	 Emit(term, sum);
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map map map map 

Shuffle and Sort: aggregate values by keys 

reduce reduce reduce 

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6 

b a 1 2 c c 3 6 a c 5 2 b c 7 8 

a 1 5 b 2 7 c 2 3 6 8 

r1 s1 r2 s2 r3 s3 



MapReduce

12

▪ Developer specifies two functions: 
map (k, v) → <k’, v’>*  
reduce (k’, v’) → <k’, v’>* 
› All values with the same key are sent to the same reducer 

▪ The execution framework handles everything else…



MapReduce
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▪ Developer specifies two functions: 
map (k, v) → <k’, v’>*  
reduce (k’, v’) → <k’, v’>* 
› All values with the same key are sent to the same reducer 

▪ The execution framework handles everything else… 
▪ Not quite… you can also specify… 
▪ partition (k’, number of partitions) → partition for k’ 
› Often a simple hash of the key – e.g., hash(k’) mod n – that divides up key space for 

parallel reduce operations 

▪ combine (k’, v’) → <k’, v’>* 
› Mini-reducers that run in memory after the map phase, used as an optimization to 

reduce network traffic
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combine combine combine combine 

b a 1 2 c 9 a c 5 2 b c 7 8 

partition partition partition partition 

map map map map 

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6 

b a 1 2 c c 3 6 a c 5 2 b c 7 8 

Shuffle and Sort: aggregate values by keys 

reduce reduce reduce 

a 1 5 b 2 7 c 2 9 8 

r1 s1 r2 s2 r3 s3 

c 2 3 6 8 



MapReduce runtime
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▪ Handles 
› scheduling: assigns workers to map and reduce tasks 
› “data distribution” 
› synchronization: gathers, sorts, and shuffles intermediate data 
› errors and faults: detects worker failures and restarts 

▪ On top of a distributed FS



MapReduce
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▪ MapReduce can refer to  
› the programming model 
› the execution framework (aka “runtime”) 
› the specific implementation 

▪ Google has a proprietary implementation in C++ 
▪ Hadoop is an open-source implementation in Java 

› original development led by Yahoo 
› now an Apache open source project 
› emerging as the de facto big data stack  
› big software ecosystem 

▪ Lots of custom research implementations 
› for GPUs, cell processors, etc. 
› includes variations of the basic programming model



What is Hadoop?
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map map map map 

Shuffle and Sort: aggregate values by keys 

reduce reduce reduce 

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6 

b a 1 2 c c 3 6 a c 5 2 b c 7 8 

a 1 5 b 2 7 c 2 3 6 8 

r1 s1 r2 s2 r3 s3 



What is Hadoop?
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▪ A simple distributed programming model (MapReduce) 
▪ Distributed file system (HDFS) 
▪ Plus some admin



DFS
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▪ Don’t move data to workers… move workers to the data! 
› store data on the local disks of nodes in the cluster (and replicate) 
› start up the workers on a node that has the data local 

▪ A distributed file system is the answer 
› GFS (Google File System) for Google’s MapReduce 
› HDFS (Hadoop Distributed File System) for Hadoop



GFS/HDFS
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▪ Files stored as chunks of a fixed size (64MB) 
▪ Reliability through replication: each chunk 3+ times replicated 
▪ Single master to coordinate access, keep metadata 
› simple centralized management 

▪ Simple API 
› push some of the issues (e.g., data layout) to the client



Reading files
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Rack1! Rack2! Rack3! RackN!

read file! (fsimage/edit)!
Hadoop Client!

NameNode! SNameNode!

return DNs, !
block ids, etc. !

DN | TT!
DN | TT!
DN | TT!

DN | TT!
DN | TT!
DN | TT!

DN | TT!
DN | TT!
DN | TT!

DN | TT!
DN | TT!
DN | TT!

checkpoint!

heartbeat/!
block report!read blocks!



Writing files
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Rack1! Rack2! Rack3! RackN!

request write! (fsimage/edit)!
Hadoop Client!

NameNode! SNameNode!

return DNs, etc. !

DN | TT!
DN | TT!
DN | TT!

DN | TT!
DN | TT!
DN | TT!

DN | TT!
DN | TT!
DN | TT!

DN | TT!
DN | TT!
DN | TT!

checkpoint!

block report!write blocks!

replication pipelining!



Namenodes
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▪ Manage the file system namespace 
› holds file/directory structure, metadata, file-to-block mapping, access permissions, etc. 

▪ Coordinate file operations 
› directs clients to datanodes for reads and writes 
› no data is moved through the namenode 

▪ Maintain overall health 
› periodic communication with the datanodes (heartbeats) 
› block re-replication and rebalancing 
› garbage collection



Running jobs
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Rack1! Rack2! Rack3! RackN!

Hadoop Client!

JobTracker!

DN | TT!
DN | TT!
DN | TT!

DN | TT!
DN | TT!
DN | TT!

DN | TT!
DN | TT!
DN | TT!

DN | TT!
DN | TT!
DN | TT!

submit job!

deploy job!

part 0!

map!

reduce!

shuffle!



The execution framework handles everything else…
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▪ The framework handles 
› scheduling: assign workers to map and reduce tasks 
› “data distribution”: move processes to data 
› synchronization: gather, sort, and shuffle intermediate data 
› errors and faults: detect worker failures and restarts 

▪ Limited control over data and execution flow 
› Everything is expressed in m, r, c, p 

▪ You don’t know 
› where mappers and reducers run 
› when a mapper or reducer begins or finishes 
› which input a particular mapper is processing 
› which intermediate key a particular reducer is processing
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Hadoop in action



An example: counting words
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30
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$ hadoop jar wordcount.jar org.myorg.WordCount $in $out 
!
... 
!
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$ hadoop jar wordcount.jar org.myorg.WordCount $in $out 
!
... 
!
$ hdfs dfs -cat $out/part-r-00000  
Bye 1  
Goodbye 1  
Hadoop 2  
Hello 2  
World 2  



Hadoop Streaming…
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▪ Allows MapReduce jobs with any executable/script as the mapper and/
or the reducer 

▪ Uses pipes 
!
$ cat myInputDirs/* | wc -w	
…	
$ hadoop jar $HADOOP_HOME/hadoop-streaming.jar \	
	 -input myInputDirs \	
	 -output myOutputDir \	
	 -mapper /bin/cat \	
	 -reducer ‘/bin/wc -w’ 
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Hadoop ecosystem



Projects “around” Hadoop
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▪ Ambari 
› Managing Hadoop clusters 

▪ Cassandra 
› “key-value store” (created by Facebook, used by Netflix, a.o.) 

▪ Hbase 
› ~BigTable (used by Facebook, Twitter (non-prod), Mendeley, Y, a.o.) 

▪ Hive 
› data warehousing (created by Facebook, used by Amazon, Netflix, Y, a.o.) 

▪ Mahout 
› Machine learning for Hadoop 

▪ Pig 
▪ Zookeeper 

› Managing Hadoop clusters



Mahout
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▪ Machine learning @ Hadoop 
› distributed or otherwise scalable algorithms  
› focusing on collaborative filtering, clustering, and classification 

▪ Apache licensed 
▪ Lots of “early” implementations 
▪ JBOA



Hbase
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▪ Distributed, wide-column store 
› random, realtime read/write access to large quantities of sparse data 
› non-relational 
› compression/Bloom filters 
› ~BigTable 

▪ Based on HDFS 
› SPOFs: HDFS Name Node and HBase Master (unlike Cassandra) 

▪ APIs: Hadoop, Java, REST, Avro, thrift



Pig
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▪ High-level “platform” for creating MapReduce jobs 
› abstracts programming from MapReduce into a high-level notation 
› similar to SQL for DBs – Pig is more procedural than (declarative) SQL 
› developed at Yahoo Labs in ’06 

▪ Can be extended with user-defined functions  
› Java, Python, JavaScript, Ruby, or Groovy 

▪ Four modes 
› interactive (shell) vs batch (script) 
› local (single machine) vs mapreduce 

▪ Users specify script in “Pig Latin”  
› ~ specifying a query execution plan 
› Pig translates this into MapReduce jobs



Pig Latin

43

A = load 'input.txt'; 
B = foreach A generate  
 flatten(TOKENIZE((chararray)$0)) as word; 
C = group B by word; 
D = foreach C generate COUNT(B), group; 
store D into 'wordcount.txt';
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Current developments



Hadoop versioning…
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▪ Typical version-controlled setup 
› trunk: main codeline 
› large features developed on branches: expected to merge with trunk at some later 

point in time  
› candidate releases branched from trunk 

▪ However…
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Issues with Hadoop 1
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▪ Limited to 4000 nodes per cluster 
▪ JobTracker = bottleneck, single POF 
▪ Only one HDFS namespace 
▪ Static map and reduce slots per node 
▪ Only MapReduce jobs 
› although some applications circumvent this



Hadoop 2
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▪ Up to 10,000 nodes per cluster 
▪ Multiple HDFS namespaces 
▪ API compatible with Hadoop 1 
▪ Beyond Java 
▪ YARN



YARN (Yet Another Resource Negotiator)
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▪ Introduced in Hadoop 0.23 (and is also in 2.x) 
▪ Divides the two major functions of the JobTracker into: 
› ResourceManager – manages the global assignment of compute resources to 

applications 
• supports hierarchical application queues 
• pure scheduler: no monitoring or tracking of status for the application 
• resource requests include memory, CPU, disk, network etc. 

› ApplicationMaster – manages an application’s scheduling and coordination 
• negotiates resource containers, launches tasks, tracks their status, and handles failures 

▪ NodeManager manages the user processes on a machine 
› launches the applications’ containers, monitors their resource usage (cpu, memory, 

disk, network), reports to the ResourceManager



Reading files
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Rack1! Rack2! Rack3! RackN!

read file!

fsimage/edit copy!
Hadoop Client! NN1/ns1!

SNameNode!
per NN!

return DNs, !
block ids, etc. !

DN | NM!
DN | NM!
DN | NM!

DN | NM!
DN | NM!
DN | NM!

DN | NM!
DN | NM!
DN | NM!

DN | NM!
DN | NM!
DN | NM!

checkpoint!

register/!
heartbeat/!
block report!

read blocks!

fs sync! Backup NN!
per NN!

checkpoint!

NN2/ns2! NN3/ns3! NN4/ns4!

or!

ns1! ns2! ns3! ns4!

dn1, dn2!
dn1, dn3!

dn4, dn5! dn4, dn5!

Block Pools!



Writing files

52

Rack1! Rack2! Rack3! RackN!

request write!

Hadoop Client!

return DNs, etc. !

DN | NM!
DN | NM!
DN | NM!

DN | NM!
DN | NM!
DN | NM!

DN | NM!
DN | NM!
DN | NM!

DN | NM!
DN | NM!
DN | NM!

write blocks!

replication pipelining!

fsimage/edit copy!
NN1/ns1!

SNameNode!
per NN!

checkpoint!

block report!

fs sync! Backup NN!
per NN!

checkpoint!

NN2/ns2! NN3/ns3! NN4/ns4!

or!



Running jobs
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RackN!

NodeManager!

NodeManager!

NodeManager!

Rack2!

NodeManager!

NodeManager!

NodeManager!

Rack1!

NodeManager!

NodeManager!

NodeManager!

C2.1!

C1.4!

AM2!

C2.2! C2.3!

AM1!

C1.3!

C1.2!

C1.1!

Hadoop Client 1!

Hadoop Client 2!

create app2!

submit app1!

submit app2!

create app1!

ASM! Scheduler!
queues!

ResourceManager!

status report!



Storm
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▪ Stream-based processing 
› distributed, realtime computation  
› usable for analytics, online machine learning, continuous computation (sensor data, 

machine data, query log data, etc.) 

▪ Based on  
› Topologies (~ MapReduce job) 
› Streams: unbounded sequence of tuples that is processed and created in parallel 
› Spouts: a source of streams in a topology 
› Bolts: do the processing on streams 

▪ Moving to YARN 
▪ Used by Twitter, Y, a.o. 



Giraph
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▪ Iterative graph processing system using high scalability 
› ~ Pregel 
› bulk synchronous parallel processing  

▪ Runs on YARN 
▪ Used by Facebook, Y, a.o. 
› analyze one trillion edges using 200 nodes in 4 minutes 



Spark
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▪ Provides primitives for in-memory cluster computing 
› supports streaming 
› Java, Scala or Python 
› speaks YARN (but not tied to Hadoop 2) 

▪ Allows loading data into a cluster's memory and query it repeatedly 
› makes it well-suited to machine learning algorithms – 10x faster than Mahout 
› limited to physical memory sizes (although spillover to disk possible) 

▪ Used by Baidu, Y, a.o. 
▪ MLbase/MLlib 
› Machine learning based on Spark



Finally, some notes
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▪ Resources 
› *Lots* of resources/courses/software/… can be found online 
› Cloudera, Hortonworks, … 
› Not just for industry 
• Amazon Elastic MapReduce 

– also Hadoop streaming 

› Main Hadoop conference: http://hadoopsummit.org/ 
• similar ones for HBase, Hive, Pig, …

http://hadoopsummit.org/


Questions? 
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We Are Hiring! 
http://careers.yahoo.com/ emeij@yahoo-inc.com 

http://edgar.meij.pro


