
1!

Back to the future – the history of
programming languages

Robert Stroud!
Adelard LLP!

!
rjs@adelard.com!

2!

Abstract

•  What can we learn from the history of
programming languages? !

•  Are we still seeing technical innovation after
50-60 years of evolution or is there nothing new
under the sun? !

•  What can the past tell us about the future? !
•  In this talk, I will review some of the key

arguments and debates that have informed the
development of programming language and
speculate about current and future trends.!

3!

Overview of talk

•  My first programming language!
•  A brief history of programming languages!
•  Technical debates!
•  What does the future hold?!

4!

MY FIRST PROGRAMMING
LANGUAGE

“Real Programmers don't eat quiche”!
!Anon, c.1984!

6!

Real Programmers

•  Real Programmers don’t write application
programs - they program right down on the bare
metal. Applications programming is for the
dullards who can’t do system programming.!

•  Real Programmers don’t document.
Documentation is for simpletons who can’t read
listings or the object code from the dump.!

•  Real Programmers don't write in PASCAL, or
BLISS, or ADA, or any of those pinko computer
science languages. Strong typing is for people
with weak memories.!

7!

My first programming
language (1974)

•  FORTRAN, written on punched cards, running on an IBM
1130 in the sub-basement of Claremont Tower!

8!

My first computer (1974)

•  IBM 1130, with up to 32K memory (3.6µs), 1MB disk.!
•  Fortran compiler ran in 8K!
•  Card reader could read up to 400 cards/minute!
•  Printer ran at 120 characters, 80 lines/minute!

9!

Fortran example -
solving quadratic equations

 SUBROUTINE QUADR(A,B,C,DISCR,X1,X2)
 REAL A,B,C,DISCR,X1,X2,VX,VY,FL,FPY

 C DISCRIMINANT

 DISCR = B**2.0 - 4.0*A*C

 C COMPUTE THE ROOTS BASED ON THE DISCRIMINANT
 IF(DISCR) 110,120,130

 C -VE DISCRIMINANT, TWO COMPLEX ROOTS, REAL=X1, IMG=+/-X2
 110 X1 = -B / (2.0*A)
 X2 = SQRT(-DISCR) / (2.0*A)

 RETURN

 C ZERO DISCRIMINANT, ONE REAL ROOT
 120 X1 = -B / (2.0*A)

 X2 = X1
 RETURN

 C +VE DISCRIMINANT, TWO REAL ROOTS
 130 X1 = (-B + SQRT(DISCR)) / (2.0*A)
 X2 = (-B - SQRT(DISCR)) / (2.0*A)
 RETURN

10!

Example - continued
 DATA ICARD,IPRT /2,3/
 REAL A,B,C,DISCR,XR1,XR2

 C READ A B C, IF A=0 THEN EXIT

 100 READ(ICARD,801)A,B,C
 801 FORMAT(3F8.3)

 C EXIT WHEN A IS ZERO

 IF (A) 110,9000,110

 C PRINT A B C
 110 WRITE(IPRT,902)A,B,C

 902 FORMAT(' QUADRATIC A=',F8.3,' B=',F8.3,' C=',F8.3)

 C COMPUTE AND PRINT THE CRITICAL VALUES
 CALL QUADR(A,B,C,DISCR,XR1,XR2,VX,VY,FL,FPY)

 WRITE(IPRT,903) DISCR
 903 FORMAT(' DISCRIMINANT=',F9.4)

 IF (DISCR) 120,130,140
 C SEE NEXT SLIDE…

11!

Example - continued
 C -VE DISCRIMINANT, TWO COMPLEX ROOTS
 120 WRITE(IPRT,913) XR1, XR2
 913 FORMAT(' COMPLEX ROOTS =(',F9.4,' +/-',F9.4,'I)')
 GO TO 200

 C ZERO DISCRIMINANT, ONE REAL ROOT
 130 WRITE(IPRT,912) XR1
 912 FORMAT(' ROOT X =',F9.4)

 GO TO 200

 C +VE DISCRIMINANT, TWO REAL ROOTS

 140 WRITE(IPRT,911) XR1, XR2
 911 FORMAT(' ROOTS X1=',F9.4,' X2=',F9.4)
 GO TO 200

 C END OF QUAD
 200 WRITE(IPRT,901)
 GO TO 100

 C END OF PROGRAM
 9000 CALL EXIT
 END

12!

A BRIEF HISTORY OF
PROGRAMMING LANGUAGES

“Those who cannot remember the past are condemned to repeat it”!
!George Santayana, “The Life of Reason”, 1905!

13!

1940-1950

•  First programmable computers became
operational!

•  Konrad Zuse invented the first high level
programming language (Plankalkül) in 1945!

•  However, his work was not published until 1972,
and not implemented until 2000!!

•  Meanwhile, all programming was done in binary
machine code!

14!

Plankalkül – syntax checking boolean
expressions

15!

1950-1955

•  Idea of generators - programs to write programs!
•  Codes for abstract machines!
•  Translation of algebraic expressions!
•  Initial proposals for high-level programming

languages!

16!

1955-1960

•  First compilers for high level programming
languages become available!

•  Division into scientific computing and business
computing!

•  FORTRAN for numerical scientific programming!
•  COBOL for business users!
•  ALGOL for describing algorithms!
•  LISP for symbolic computing and AI research!
•  APL as a mathematical notation!

17!

FORTRAN
A high-level language for scientific

programs (introduced 1954)

Image courtesy of Columbia University

John Backus, IBM (b1924)

18!

COBOL
A business data processing language (1959) strongly

backed as a standard by the US Department of
Defense

Images courtesy of US Navy and Computer History Museum

Rear Admiral Grace Hopper (1906-1992)

19!

Edsger Dijkstra

•  �The use of COBOL cripples the mind; its
teaching should, therefore, be regarded
as a criminal offence.� 
 
 
!

•  �FORTRAN, "the infantile disorder", by
now nearly 20 years old, is hopelessly
inadequate for whatever computer
application you have in mind today: it is
now too clumsy, too risky, and too
expensive to use.�!

Edsger Dijkstra,
�How do we tell truths that

might hurt?�, 1968

20!

Cobol today

•  In the late 1990s, the Gartner Group estimated
that of the 300 billion lines of computer code that
existed, eighty percent – or 240 billion lines –
were COBOL. !

•  They also reported that more than half of all new
mission-critical applications were still being
created using COBOL – an estimated
5,000,000,000 net new lines of COBOL code
annually.!

21!

Fortran today

•  Fortran remains the language of choice for high
performance numerical computing!

•  The language has been tuned for scientific and
numeric work, and can be run very efficiently on
parallel computers !

•  Thus, Fortran is the primary language for some
of the most intensive super-computing tasks,
including weather and climate modeling!

•  Since Fortran has been around for nearly sixty
years, there is a vast body of Fortran in daily use
throughout the scientific community!

22!

Fortran 2000

•  “I don’t know what programming language
people will be using in the year 2000, but I know
it will be called Fortran”!
•  (Anon, circa 1980?)!

•  “As I said in my comments to the committee,
[Fortran 90' would be a] nice language, too bad
it's not Fortran”!

23!

ALGOL
highly-influential precursor to Pascal, Simula, etc.

Peter Naur, editor of the Algol Report
(1960)

Image courtesy of Computer History Museum

24!

Algol 60

•  �The more I ponder the principles of
language design, and the techniques
which put them into practice, the more is
my amazement and admiration of
ALGOL 60. !

•  Here is a language so far ahead of its
time, that it was not only an improvement
on its predecessors, but also on nearly all
its successors.”!

Tony Hoare,
“Hints on Programming Language

Design”, December 1973

25!

LISP
List processing language based on λ-calculus,

still widely used for Artificial Intelligence programming

John McCarthy,
inventor of Lisp and originator of the term

"Artificial Intelligence"

(define (cubes N)!
 (cond!
 ((= N 0) nil)!
 (else!
 (append (list N (* N N N))!
 (cubes (- N 1))))))!
!
(cubes 64)

26!

Cubes in Haskell
(Lisp style)

LISP
(define (cubes N)
 (cond
 ((= N 0) nil)
 (else
 (append (cubes (- N 1)

 (list N (* N N N)))))))!
Haskell
cubes :: Int -> [(Int,Int)]
cubes n

| n == 0 = []
| n > 0 = cubes(n-1) ++ [(n, n^3)]

28!

APL
array programming language that used its own distinctive

character set based on mathematical notation

Ken Iverson, inventor of
"A Programming Language (APL)"

Program to print cubes:!
Φ2,64ρι64,(ι64)*3!
!
Program to print primes:!
(~R�R�.×R)/R�1� ιR!

29!

Cubes in Haskell
(APL style)

APL
 L ← cubes N

[1] L ← Φ2,NριN,(ιN)*3

Haskell
cubes :: Int -> [(Int,Int)]
cubes n = zip [1..n] (map (^3) [1..n])

30!

Edsger Dijkstra

•  �APL is a mistake, carried through to
perfection. It is the language of the future for
the programming techniques of the past: it
creates a new generation of coding bums.� 
 �How do we tell truths that might hurt?�, 1968  
!

•  �Lisp has jokingly been called "the most
intelligent way to misuse a computer". I think
that description is a great compliment
because it transmits the full flavor of
liberation: it has assisted a number of our
most gifted fellow humans in thinking
previously impossible thoughts.� 
�The humble programmer�, 1972!

Edsger Dijkstra,

31!

1960-1970

•  Development of ALGOL-like languages:!
•  Algol 60, Simula, Algol/W, Algol 68 !

•  Birth of structured programming:!
•  �Goto statement considered harmful�!

•  Arguments about successor to Algol 60 led to a
split in the program language community!

•  Attempt by IBM to define a universal language
PL/I, for both business and scientific users!

•  Object-oriented programming invented by
designers of Simula 67!

32!

Simula�67

•  The Simula programming language was
designed in Norway by Kristen Nygaard and  
Ole-Johan Dahl!

•  Simula was an extension to Algol that was
intended as a simulation language!

•  As a side-effect of thinking about how to model
real-world entities, the designers of Simula
invented object-oriented programming!!

•  However, this wasn�t widely recognised until
much later…!

33!

Simula class

•  A Simula class is a generalisation of an Algol
block structure!

•  A class can contain declarations and code!
•  However, unlike a block, a class continues to

exist after the code has been executed!
•  Instances of classes are created dynamically and

managed by references!
•  Other features of Simula classes:!

•  Class prefixes for inheritance!
•  Virtual methods and dynamic binding!
•  Support for concurrent execution!

34!

Stack class

class Stack;
begin
 integer top;
 integer array contents(0:9);

 procedure push(i); integer i;
 begin
 contents(top) := i;
 top := top + 1;
 end;

 integer procedure pop;
 begin
 top := top - 1;
 pop := contents(top);
 end;
end

35!

Program using Stack

begin
 external class Stack;

 ref(Stack) stack :- new Stack;
 stack.push(100);
 outtext("Result = ");
 outint(stack.pop);
 outimage;
end

36!

1970-1980

•  Pascal language embodies current wisdom
about structured programming and data types:!
•  �Algorithms + Data Structures = Programs�!

•  But Pascal didn�t address all the issues: !
•  Programming in the large - modules!
•  Abstract data types (object-based programming)!
•  Concurrent programming!

•  Systems programming - writing operating
systems in high level languages!

•  Development of Unix and C at Bell Labs!
•  Work at Xerox PARC on Smalltalk, Mesa!

37!

Pascal-like languages

•  Use begin … end for blocks!
•  Use := for assignment!
•  Use �var : type� for declarations!
•  Use �procedure fun() : type� to declare

functions and procedures!
•  Arrays can have arbitrary dimensions!
•  Procedure declarations can be nested!
•  Examples:!

•  Pascal, Module-2, Ada, Oberon!

38!

C-like languages

•  Use { … } for blocks!
•  Use = for assignment!
•  Use �Type var� to declare variables!
•  Use �Type func()� to declare functions and

methods!
•  Arrays are indexed from zero!
•  Nested functions/methods are not allowed!
•  Examples:!

•  C, C++, Java, C#!

39!

1980-1990

•  Pascal widely adopted as introductory language
for teaching programming!

•  Unix and C became widely known outside AT&T,
and popularise the idea of scripting languages!

•  US DoD standardise on Ada as a language for
developing embedded systems!

•  BYTE magazine publishes a special edition
devoted to object-oriented programming and
Smalltalk-80!

•  C++ becomes popular as an object-oriented
extension to C!

40!

1990-2000

•  Growth of the Internet and World Wide Web!
•  Unix-based scripting languages such as perl

used to write web applications!
•  C++ widely criticised for its complexity and error-

proneness!
•  Java developed as a safe alternative to C++ for

object-oriented programming!
•  Growing interest in dynamically typed languages

for rapid prototyping and software development!
•  Development of component-based programming

models, and embedded scripting languages!

41!

2000-2005

•  Microsoft develop their own version of Java
called C# as part of the .Net platform!

•  Java continues to evolve, partly in response to
competition from C#!

•  Sophisticated programming development
environments are widely used!

•  Dynamically typed languages are increasingly
used, particularly for web development!

•  Everyone wants closures…!

42!

TECHNICAL DEBATES

“The language designer should be familiar with many alternative!
features designed by others, and should have excellent judgment
in choosing the best, and rejecting any that are mutually
inconsistent.”!

!C.A.R. Hoare, “Hints on Programming Language Design"!

43!

Some technical debates

•  Blocks, modules, classes, closures!
•  Strong typing vs. weak / dynamic typing!
•  Structured programming!
•  Reference vs. value semantics!
•  Exception handling!
•  Multiple inheritance!
•  Concurrency!
•  Event handling vs. delegates!
•  Reflection, metaobject protocols, aspects!
•  Syntactic sugar, extensibility, expressive power!

44!

CLOSURES

“Lambda: The Ultimate …”!
!Guy Steele, 1976-1979!

45!

History of Closures

1936 - Alan Turing invents every programming
language that will ever be but is shanghaied by
British Intelligence to be 007 before he can patent
them.!
!

1936 - Alonzo Church also invents every language
that will ever be but does it better. His lambda
calculus is ignored because it is insufficiently C-like.
This criticism occurs in spite of the fact that C has
not yet been invented.!
!

James Iry, “A brief, incomplete and mostly wrong history of
programming languages”!

!

46!

History of closures (cont.)

1958 - John McCarthy and Paul Graham invent
LISP. Due to high costs caused by a post-war
depletion of the strategic parentheses reserve LISP
never becomes popular. In spite of its lack of
popularity, LISP (now "Lisp" or sometimes "Arc")
remains an influential language in "key algorithmic
techniques such as recursion and condescension”.!
!

James Iry, “A brief, incomplete and mostly wrong history of
programming languages”!

47!

History of closures (cont.)

1970 - Guy Steele and Gerald Sussman create
Scheme. Their work leads to a series of "Lambda
the Ultimate" papers culminating in "Lambda the
Ultimate Kitchen Utensil." This paper becomes the
basis for a long running, but ultimately unsuccessful
run of late night infomercials. Lambdas are
relegated to relative obscurity until Java makes
them popular by not having them.!
!

James Iry, “A brief, incomplete and mostly wrong history of
programming languages”!

48!

Structure and Interpretation
 of Computer Programs

“SICP has had a dramatic impact on
CS curricula over the last decade
[…]!
The book emphasizes the central
role played by different approaches
to dealing with time in computational
models: objects with state,
concurrent programming, functional
programming and lazy evaluation,
and nondeterministic programming.”!
http://mitpress.mit.edu/sicp/!
!

49!

Closures in Algol 60

•  By default, Algol 60 used call by name for
parameter passing, which was implemented
using a ‘thunk’ (aka closure)!

•  Call by name parameters are re-evaluated in the
caller's referencing environment every time the
parameter is used. !

•  The effect is as if the called routine had been
textually expanded at the point of call!

•  This allows a technique called Jensen’s device,
which can be used to perform summation or
integration of an expression over a range!

50!

Example

To evaluate the sum!
!
 y = ∑ 3x² - 5x + 2!
 1≤x≤10!
!
we can simply say!
!
 y := sum(3*x*x - 5*x + 2, x, 1, 10);!

51!

Jensen’s device

real procedure sum (expr, i, low, high);!
 value low, high;!
 comment low and high are passed by value;!
 comment expr and i are passed by name;!
 real expr;!
 integer i, low, high;!
begin!
 real rtn;!
 rtn := 0;!
 for i := low step 1 until high do!
 rtn := rtn + expr;!
 comment the value of expr depends on the value of i!
 sum := rtn!
end sum!

52!

Closures in Java

“Java 8 is expected in March 2014 and will include features
that were planned for Java 7 but later deferred!

JSR 335: Language-level support for lambda expressions
(officially, lambda expressions; unofficially, closures)
under Project Lambda. !

There was an ongoing debate in the Java community on
whether to add support for lambda expressions, Sun later
declared that lambda expressions would be included in Java
and asked for community input to refine the feature.”!
http://en.wikipedia.org/wiki/Java_version_history!
!
!

53!

ALGOL WARS

“Algol 60 was an improvement on almost all of its successors”!
!C.A.R. Hoare!

54!

Evolution of Algol

“ALGOL / W was not only a worthy successor of ALGOL 60, it
was even a worthy predecessor of PASCAL […] !
I was astonished when the ALGOL working group, consisting
of all the best known international experts of programming
languages, resolved to lay aside the commissioned draft on
which we had all been working and swallow a line with such
an unattractive bait [ALGOL 68].!
The best we could do was to send with it a minority report,
stating our considered view that, "… as a tool for the reliable
creation of sophisticated programs, the language was a
failure.”!

C.A.Hoare, “The Emporer’s New Clothes”!

55!

Algol 68 Minority Report

“We regard the current Report on Algorithmic Language
ALGOL 68 as the fruit of an effort to apply a methodology for
language definition to a newly designed programming
language. !
!
We regard the effort as an experiment and professional
honesty compels us to state that in our considered opinion we
judge the experiment to be a failure in both respects.”!
!

Signed by: DIJKSTRA, DUNCAN, GARWICK, HOARE,
RANDELL, SEEGMUELLER, TURSKI, WOODGER!

56!

The authors of the Algol 68 report
beg to disagree…

“The writing of the Report was not only Work, it was also Fun, as
should be apparent to all readers. […] !
!

Just reading aloud certain lines of the syntax, slightly raising the
voice for capitalized words, conveys a feeling of heroic and
pagan fun.!
!
REFETY ROWSETY ROWWSETY NONROW slice{860a} :
 weak REFETY ROWS ROWWSETY NONROW primary{81d},
 sub symbol{31e},
 ROWS leaving ROWSETY indexer{b,c,d,e},
 bus symbol{31e}.

!

Such lines can not be read or written with a straight face.”!
!

!C.H.A. Koster, “The making of Algol 68”!
!

57!

Closures in Algol 68?

“It is striking to note the great concern for micro efficiency,
which has in many respects hampered the development of
Algol 68. […]!
!

A discussion on procedures delivering procedures (in some
cases limited by scope problems) did not lead to the obvious
conclusion to do away totally with the (statically
unenforceable) scope restrictions!
!

Algol 68, which has higher-order functions, narrowly missed
having Currying, which would have made it possess a
complete functional sublanguage, even though Gerhard Goos
saw no problem in implementing it.”!
!

!C.H.A. Koster, “The making of Algol 68”!

58!

Algol 68 at Malvern

•  At the first Algol 68 implementation conference in
1970, the group from the Royal Signals and
Radar Establishment (RSRE), Malvern
demonstrated a working Algol-68 R compiler!

•  They went on to relax the lexical scoping
restrictions on procedures returning procedures,
and used closures to implement an object-based
capability architecture…!

59!

Back to the future?

•  On November 10 2009, Google announced a
garbage-collected Algol-descended language
called Go…!

•  A blog article compare Go against a Brand X
Algol-descended language and concluded that
Brand X was better:!
•  “Go has more in the way of features but Brand X is

more consistent with its features.!
•  “Brand X feels complete in a way that Go doesn’t”!

•  Brand X = Algol 68!
http://cowlark.com/2009-11-15-go/!

60!

WHAT DOES THE FUTURE
HOLD?

“What has been will be again, what has been done will be done
again; there is nothing new under the sun”!

!Ecclesiastes 1:9!

61!

Language wars

1996 - James Gosling invents Java. Java is a relatively
verbose, garbage collected, class based, statically typed,
single dispatch, object oriented language with single
implementation inheritance and multiple interface inheritance.
Sun loudly heralds Java's novelty.!
!
2001 - Anders Hejlsberg invents C#. C# is a relatively
verbose, garbage collected, class based, statically typed,
single dispatch, object oriented language with single
implementation inheritance and multiple interface inheritance.
Microsoft loudly heralds C#'s novelty.!

James Iry, “A brief, incomplete and mostly wrong history of
programming languages”!

62!

The march of progress?
(due to Cay Horstmann)

1980: C
printf("%10.2f", x);!

1988: C++
cout << setw(10) << setprecision(2) << showpoint << x;!

1996: Java
NumberFormat formatter = NumberFormat.getNumberInstance();
formatter.setMinimumFractionDigits(2);
formatter.setMaximumFractionDigits(2);
String s = formatter.format(x);
for (int i = s.length(); i < 10; i++)

 System.out.print(' ');
System.out.print(s);!

2004: Java
System.out.printf("%10.2f", x);

63!

Some observations

•  Programming languages succeed or fail for both technical
and non-technical reasons!

•  But good language features survive or get  
re-invented!

•  To a first approximation, most programming languages end
up with more or less the same features eventually…!

•  However, evolving a programming language with an
established user based becomes increasingly difficult over
time!

•  Language designers should learn from each other’s
mistakes and try to find a combination of features that work
well together!

64!

Current trends and predictions

•  Broad agreement and convergence on a common set of
desirable language features!

•  Integration of functional paradigms such as closures into
mainstream programming languages!

•  Hybrid type systems that support both static and dynamic
typing, with type inference used to reduce verbosity!

•  Increased use of syntactic sugar for expressive power!
•  Annotations and meta object protocols!
•  Sophisticated language-aware tool support for refactoring,

automated testing, �drag and drop��programming!
•  Java and C* aren’t going to go away…!
•  But neither are Fortran or Cobol!!

65!

Key contributions

•  Fortran - first optimising compiler!
•  Lisp - list processing, symbolic computation!
•  Algol - block structure, recursion, procedures!
•  Simula - object-oriented programming!
•  Pascal - structured data types!
•  C - system programming!
•  Smalltalk - pure OO language!
•  Mesa - separate compilation!
•  Algol 68 – orthogonal design !

66!

Closing thought

�I think conventional languages are for the birds. They�re
really low level languages. They�re just extensions of the von
Neumann computer, and they keep our noses pressed in the
dirt of dealing with individual words and computing addresses,
and doing all kinds of silly things like that, things that we’ve
picked up from programming for computers; we�ve built them
into FORTRAN; we’ve built them into PL/I; we’ve built them
into almost every language. The only languages that broke
free from that are LISP and APL, and in my opinion they
haven�t gone far enough.�!

John Backus, inventor of FORTRAN, ACM HOPL conference, 1981!

67!

REFERENCES

“Of making many books there is no end; and much study is a
weariness of the flesh”!

!Ecclesiastes 12:12!

68!

History of programming
languages

•  Wikipedia article!
•  http://en.wikipedia.org/wiki/

History_of_programming_languages!
•  O’Reilly poster!

•  http://oreilly.com/news/languageposter_0504.html!
•  Original poster!

•  http://www.levenez.com/lang/!
•  Quotes about programming languages!

•  http://www.scriptol.com/programming/quotes.php!

69!

Go To considered
harmful

•  Dijkstra, “A case against the Go To statement” 
(aka “Go To statement considered harmful”)!
•  http://www.cs.utexas.edu/users/EWD/transcriptions/

EWD02xx/EWD215.html!
•  Rubin, “‘GOTO considered harmful’ considered

harmful”, CACM 30(3), March 1987!
•  http://web.archive.org/web/20090320002214/http://

www.ecn.purdue.edu/ParaMount/papers/rubin87goto.pdf!
•  Dijkstra, “On a somewhat disappointing

correspondence”!
•  http://www.cs.utexas.edu/users/EWD/ewd10xx/

EWD1009.PDF!

70!

Algol

•  Call by name and Jensen’s Device!
•  http://www.cs.helsinki.fi/u/wikla/OKP/Asiat/

JensensD.html!
•  Hoare, “Record Handling”!

•  http://archive.computerhistory.org/resources/text/algol/
algol_bulletin/A21/P36.HTM!

•  Hoare, “Null references: the billion dollar
mistake”!
•  http://www.infoq.com/presentations/Null-References-

The-Billion-Dollar-Mistake-Tony-Hoare!

71!

Algol 68

•  Algol 68 Minority Report!
•  http://archive.computerhistory.org/resources/text/algol/

algol_bulletin/A31/P111.HTM!
•  Koster, “The making of Algol 68”!

•  http://www.cs.ru.nl/~kees/home/papers/psi96.pdf!
•  On Go – a comparison with Algol 68!

•  http://cowlark.com/2009-11-15-go/!

72!

Lisp / Scheme

•  Steele and Sussman, Lambda papers!
•  http://library.readscheme.org/page1.html!

•  Steele & Sussman, “Structure and Interpretation
of Computer Programs”!
•  http://mitpress.mit.edu/sicp/!

•  Graham, Lisp essays!
•  http://www.paulgraham.com/lisp.html!

73!

Miscellaneous

•  Bauer and Wössner, “The Plankalkül of Konrad
Zuse: A forerunner of today’s programming
languages”!
•  http://www.catb.org/retro/plankalkuel/!

•  Dahl, “The birth of object-orientation: the Simula
languages”!
•  http://www.olejohandahl.info/old/birth-of-oo.pdf!

•  Hoare, “Hints on Programming Language Design”!
•  ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/73/403/CS-

TR-73-403.pdf!

74!

Humor

•  Real programmers don’t use Pascal!
•  http://www.pbm.com/~lindahl/real.programmers.html!

•  A brief, incomplete and mostly wrong history of
programming languages!
•  http://james-iry.blogspot.co.uk/2009/05/brief-incomplete-and-

mostly-wrong.html!
•  The evolution of a programmer!

•  http://www.ariel.com.au/jokes/
The_Evolution_of_a_Programmer.html!

•  The evolution of a Haskell programmer!
•  http://www.willamette.edu/~fruehr/haskell/evolution.html!

