BCS APG 10.10.13 —

System software support of hardware efficiency

by Igor Schagaev

Plan for today -|

Theories in brief:
FT: GAFT, Processes
Redundancy
Recoverability
Reconfigurability

System Structure Change

GAFT, Supportive processes

Redundancy handling
Reconfigurability support
Static&Dynamic Control of RP

Properties...

Reliability...

Fault tolerance...
Performance...
Maintainability...
Adaptability...
Scalability...

Life circle costs

(manufacturing,
run-time, utilization)

Energy efficiency

Ease of use
(learning, application,
maintenance)

Plan for today -1 |

System Software for FT: Language
Data structures
Control operators
Semaphores
Recovery point formation

System Software for FT: Run-time system
Health monitoring - tests and checks
Recovery point support
Recovery point handling (organization, HWV use)
Recovery point search
GAFT support: reconfiguration control - a syndrome

System Software & Hardware for future: PRESSA

3

R&D principles for computer systems

Redundancy Theory

Reliability Control | | Computer Economics | | Management
Theory Theory ~ Science | ©
_ J
Hardware @ System Software

Active Zone: S o
- Arithmetic Unit cmantic
:) T - GLL
- Logical Unit Simplicity
Structure
Interface zone Redundancy 3
- Bus, Configurator Reconfigurability T Anguage
o - Concurrency
- Internal Scalability)
 Extemal B bill e |
Pass: - HW state handling
assive zone ,
S - SW state handling
- dystem memory .
- Recovery points
- User memorv

Reliability vs. performance in computer systems

Reliability of Performance
the system i1s of the System
limited 1s limited

System
Complexity 1s
Constant

Number of elements in the System 1s n

Model of fault tolerance: introduction of GAFT

. Y , Generalized Algorithm of Fault
' Tolerance (GAFT)
| ’@ I >
. !

» Detecting faults

» ldentifying faults

» ldentifying faulty component

» Hardware reconfiguration to achieve a
fault-free state

» Recovery from correct state(s) for
FT property will be achieved if both: the system and user software

Model of fault tolerance GAFT and HW & SSW

Hardware and System Software GAFT in HW and SSW
for Fault Tolerance

//' \\\ IF error is detected THEN
M

MFaults System Determine the fault type;

IF the fault is permanent THEN

Locate the faulty component;
Hardware
System
Software

Reconfigure the HW by
excluding faulty unit;
END;

IF the fault affected the SW THEN
/// Locate faulty program states
and find the correct ones
to continue;
Recover the system from
} preliminary stored correct SW

states
END;
END;

New property achieved

GAFT implementations using redundancy

Step Description

Redundancy Types

HW(I) HW(S) HW(T) SW(I) SW(S) SW(T)
0 PERIODICALLY DO 7 7
Create recovery point END
A IF error is detected THEN 1,3,9 1,2 8 6,9 6
ELSE
B Determine the fault type 1,3,9 1 8 6,9 6
C IF fault is permanent THEN
D Locate Faulty Element 1,3 1 8
E Reconfigure Hardware 10 10
END
F IF hardware has been reconfig- 5 8 6 5,6
ured OR software is affected
G Locate faulty software states 7 7
H Recover software 9 7,9 7
I IF hardware has been reconfig-
ured THEN
JJ Reconfigure software 10 10
END
END
K CONTINUE

GAFT might be implemented (and fault

Time (T) or
Structure (S)

Implemented in and by:

Hardware (HW) and/or .-
Software (SW)

-
-
L

tolerance achieved) using redundancies of:
Information (I)

. this way we do

10

Name

HW checking
processor instruc-
tion re-execution

Triplicated
memory

Duplicated

storage device

Duplicated
program run & in-
put validation

Checkpoints

Recovery points

CRC

Watchdog

Reconfiguration
facilities

Redundancy

type
HW (4S,6T)

HW (51, 6T)

HW (35)

HW (25)

SW (2T)

SW (8T, 5S)

SW (6T, 81)

SW(I)

HW(S)

HW (S, S2)

Description

Each hardware component such as proces-
sor, memory, controllers has built-in checking
schemes to detect faults.

The processor itself has measures to detect
faults during execution and can abort and
restart the currently running instruction

The memory chips are triplicated and a voter
compares the output of the three memory
chips. If a deviation is detected, the major-
ity voting is used to identify the faulty chip
and the faulty value is rewritten. Read after
write ensures the proper storing of the data.
Storage devices such as flash cards or hard
disks are duplicated. Note that this feature
does only provide fault detection but not re-
covery

The same program is run twice with the same
input data set. The output of both programs
is then compared. Prior to running the pro-
gram, the input data is validated to conform
to a certain pattern and range.

Periodically executed checking functions for
checking software and hardware, implemented
in pure software

Recovery points are points in time when the
complete system state is consistently stored on
a permanent storage device such as flash discs
or hard disks. They are either triggered by
software or an external interrupt.

The data stored to the external storage device
is protected by a CRC-32. This allows the
identification of incorrect data but no recov-
ery.

As an ultimate resort, a watchdog is used to
restart parts of, or the whole system. Hard-
ware based watchdogs can typically on restart
the whole system at once.

If the hardware failed, the software can recon-
figure the hardware to exclude faulty compo-
nents. In addition, the software can start al-
ternative software version which need less re-
sources to adapt to the new hardware config-
uration.

GAFT vs. ontologies... personal comment

Now in BOLD: Classification of system redundancy in terms of
Information (l), Time (T), Structure (S)
can be used to implement Fault Tolerance (GAFT).

Fault tolerance, as a process, has to be implemented through
hardware and system software combination. Both: concept and
implementation form a theory that allows to analyze, control and
predict behavior of the system with new properties.

An example of GAFT extension:“Method and apparatus of
system safety”’ (patent http://it-acs.co.uk/files/GB244835 | B.pdf)

In contrast to popular wave of various kind of ontologies that
execute descriptive function of knowledge - GAFT and rigorous
classification of redundancy analyze & predict system behavior.

9

http://it-acs.co.uk/files/GB2448351B.pdf
http://it-acs.co.uk/files/GB2448351B.pdf

GAFT & redundancy theory vs. ontologies

Definitive function Characteristic Function Predictive function
(DF) (CF) (PF)
GAFT + + +
Ontologies + ? +

Power of any theory is in predictions and our ability to use them

GAFT impact on performance and reliability

.- -

‘ Performance

Performance & Reliability of |
our systems should be within | |
required zone for the S :
whole operation cycle... |

I
A
< / I ! Reliability

+ 24 Time | ‘ |

Reliability of a redundant

system with malfunctions
Reliability of a non-redundant
+ 16 4 :
, system with malfunctions . re .
) / . Reliability is
Reliability of a system § .
/ without malfunctions achlevable
with system
software
1:0 100 10:()0 s u PPO rt

GAFT implementation using SSWV soultions

Probability of system recovery

A
“Good” FTS
|
A
“Medium” FTS “Weak” FTS
\ 4 \ 4 \ 4
0 ' Instruction Procedure Module Task

'T\ Fault appearance

\1/ Recovery from fault

> Time

NB: if probability of recovery # | the system is NOT fault tolerant !!!

12

Language reflection of FT systems

Real Time

HW (Timers, RISC structure
of processor etc

Language (Limitation of the
language constructions that
complicate RT capability)

OS (Management of timers
and task scheduling with RT
constraints

AP (Application specific
schemes of RT)

New Features

S1
Sj
S2
Sn
S1
N4
Approaches

|3

Fault tolerance

HW (Majority schemes,
Hamming codes)

Language (check points,
recovery points, at language
level)

OS (management of check
points, recovery points,
synchronization, HW
reconfiguration)

AP specific realization of
possible hardware deficiency
solutions

Data structures and control operators 4 FT

2006 Felix Friedrich, et.al.:
Array-Structured Object Types for
Mathematical Programming.

File JMLC 2006: PP 195-210
/57 Rl Program control
structures
Language data Reootd

~

—>
structures / l \

New
nWhile

New
structures

File structure must be modified, Control operators - upgraded

| 4

State of the systems, Control operators

C,D,P model Loop

Predicates Addresses Data

£l

’U’ L

o ¥ (¥

y

€ >

Instructions as three graphs: P, A, D

Level i is what has been changed in state of hardware.

All: control, data and conditions involved must be preserved (to be able to recover...)

|5

Control using nWhile

So far there is no clear separation
of the actions to react on
exceptions at the language level
for operators of repetitions.

This is because awaiting of an
event might be perfectly valid

action or ...

endless wasting due to hardware
fault that has happened.

New nwhile* loop can be useful

Takaoka™ suggested new control operator, actually
without thinking about embedded system issues...

This operator was called nwhile, and looks like
below:

nwhile Bdo §

where B is condition to enter the loop and S is
body of the loop.

Introducing precondition P and post condition Q
for this structure Takaoka suggested to use several
assighment statements Si, Sz, S3,... SN in S which
affect the condition B and therefore P; Py, P3, Pa,...
Pn that held immediately before S, Sz, Ss,... Sn
under precondition P.

* New While loop [The semantics of new while loop, Tadao Takaoka, The Computer Journal, Vol.29,No 1, 1986).

|6

lPlAB

Si

lQl/\B

n

lP A B

lQn/\B

Control using nWhile

Then we have an inference rule:

H{e. A B}Sl.{Ql.},H(—lB AQ, D0),PA—=BDQ
{PYnwhileBdoS{Q}

What it gives us? Actually, a lot.

Writing a program we use loop operators as
usual, but during compilation System Configurator
should introduce other S»>-Sn conditions for loop
exit that might be connected with computer state
changes including hardware faults, timer run out
or other interruptions, including interaction with
other processes.

Then in case of hangs of the loop due to problem
within hardware and/or arrival of another signal
we are able to break loop execution and make it
visible...

hardware state change is reflected immediately
within program control construction and ... we are
not using brutal force of waiting or waste of vast
amount of another redundancy... still being
uncertain...

17

More control: Fault Tolerant Semaphores

Concurrency and parallelism confusion;

What we start in parallel eventually will end up
with concurrency... and (possibly) vice verso...

Resolving confusion - Graph Logic Model (GLM)

XOR and AND will resolve confusion. Known
solutions semaphores, monitors are all down to

XOR.... But we should be using both operators...

Still... Why Fault Tolerance is required!?

...Yaiting mad driver to release train handle
might be costly... (Jethro Tull, Locomotive breath)

Time redundancy - waiting for few ms for
processes duration within dozens of ns? ... It is
NOT the solution.

Information and structure redundancies should
be used instead...

GLM - is structural redundancy...
Information?

a:XOR_(ab,yd),AND, (Bb,0c)
a:XOR (ab,yd),XOR_ (Bb,0c)

..old Charlie stole the handle and
the train it won't stop going
no way to slow down...

Control: Fault Tolerant Semaphores -1 |

Mad driver; also known as “dining philosopher” should be trained to be polite...

We need to teach our dining philosophers to be polite, and ... "die like a man”,
especially when they are in critical section.

What does it mean? The one, being in critical section, if sick or dies must:

- Return all spaghetti, forks - resources he uses
- Inform the rest by "l am dying" message...

Then “the rest” (Runtime system in our case...) has to :

- Reduce number of voters for further voting in sessions of concurrency resolution
- Mark a messenger as suspected (not excluded, or dead) and place in a special pool
- Schedule a “reincarnation procedure”

(...power of malfunction might be big, duration long (200ms+), but “treatable...)

This scheme has been called FT semaphores...

19

FT Semaphores hardware support: T-logic scheme

for one computer I for multiprocessor system

I)_S’E_}j’{—lj.e_l [lf:_}"fc-sl l-_::_}“ﬁn:el
~

ARCHITECTURE BUS
d

(\

| |

| |

| |

| |

| |

l RAM RAM RAM :

|

| |

| L | | J |

[Idle Memory used by |

I memory ERRIC [

I I -Mﬁ

\ PAsSsSIVE ZONE | \,
~ 7’

- HW element “suspected” should “switch itself” -
(left RAM above);

- System should be able to return it in action after
full-size check, if it was recovered.

20

GAFT: System checking by system software - |

all about testing at the level of program -

T P T

—_— —— Time axis

Regular sequence of program to detect

/ hardware malfunctions
[A

Time axis

Regular sequence of program with test of
/ hardware integrity to detect permanent faults

Time axis

Regular sequence of program with test of

/ hardware integrity to detect permanent faults

and malfunctions

Time axis

A testing phase is required initially at boot up time to guarantee the correctness of the hardware; periodic test is required before and dafter
the execution of a program. The applied tests might vary in depth (coverage), type of faults and the set of the tested hardware.

21

GAFT: System checking by system software - |l

PE e ~

Te Sti ng at th e Ievel Of taS I(S coe :',.""':I:hree tasks are running, each vv|th

L its own test (the green boxes) at the
end of the task execution. '

.-

Tasks

Clock tick Time axis

Tasks and tests combined

NB | If condition of hardware component Ui has implicit dependencies on component Uj, test of Uj must be executed first.

NB2 |t is wise to wait task completion and then run test of hardware instead of stop, unload and reload task dfter test.

22

GAFT: System checking by system software - |l

Testing at the level of tasks...

- L3 tad3_ 13

o %) Laaz "

_tadl Ly "
Lsdao 40
T, T,

" Tasks are running, each with its '
own test (the green boxes) at the

. end of the task execution and, when

required unload and reload
tasks

~
~ -

An algorithm for scheduling and imbedding tests of hardware used by each task
should suit various number of tasks and time constrains for group of task completion...

The test of task i is performed asynchronously, if it is possible to schedule it in the timeframe ti to di
as long as all other tasks can still meet their deadlines and only one test is executed simultaneously.
Otherwise, execute the test synchronously. More see pp 68 -/79 (http://www.it-acs.co.uk/book.html)

23

GAFT: Recovery by System Software

.............
.......
.....
.

c.
LI
...............

RP formation

g
.,
¥

RP formation rules

.- v Ses
.- ' ~e
o A
Aa

Time Structure Information
Timer of and for: Plain: back-up for Condition of.
- Process - Task - a System:
- Module - Program
- Task - Full size back-up - aTask (dynamic
- System RQ priority)
- Runtime control | Structure-wise:
. . . - Run-time control
- Is-llerarchlcal (static) . - Check sums of RPs
- Save as you go (dynamic)

Recovery points (RP)

...........
........
......

. ..

Run-time system
support

RP monitoring/handling

4"‘
&

RP structure support

“Fake” formation

Check-sums

Indexing

RP handling

Hardware support

24

~
~
~
-~
2

Search of correct RPs

Linear

Binary

Modified linear

Power of search

Search control

RP formation: structure-wise scheme

.............
........
. ..

.............
........
. ..

Static, Language Recover’)’ POlntS (RP) ::'"....Language with Run-."."..
........ '-"..time system SUPPOrt.'..._.-
Hierarchy of program Save as you go

N Wirth’s structural programming can be exploited: Along the tree, selected path:

1) Select subset of visible variables you use
2) Create a “Key” , i.e. collection of variables to a
given leaf

1) Structural features and limitation of visibility for lower layer
variables reduce a volume of recovery points;

2) Only variables that are accessible at the level are required
to save at recovery point;

0 0 0 0 0

1 RP1 1 1 1

5 RP2 5 5

3 RP3 3
RP4

K=<Vp1... , Vox>< Vi1, ..., Vi<Voy,..., Vor><Vsy,..., Vs> <Viay,..., Vim >

25

Recovery Points Support Summary

- The original program code should be re-processed, introducing a generation of
recovery point at the beginning of each hierarchy level;

- During compilation a data structure with a list of accessible variables should
be formed for each level of a program nesting;

- The program begins an execution of each successive level by calling run-time system
indicating the level number, the number of accessible modules and list of variables;

- Run-time system has to monitor keys along executing a program and generate
checksums along execution of recovery point;

- Run-time system can “simulate” recovery point formation when it is required;

- Execution of “generate recovery point” action consists of recording of variables
accordingly key generated scheme along the execution a program: Save as you go

NB. Efficiency of “static and dynamic economy” methods of recovery point formation
was proven to be at the order of magnitude better than other known schemes of
recovery point schemes.

26

Searching of correct state of a program: MLR

...Faults might stay latent in the system for a long time until they trigger an error, i.e. it
implies that the last recovery points have been damaged by the latent fault...

Malfunction Direct Effect Fault Hardware
manifestation of malfunction detection checking scheme
t detects fault

a

—> Modified Linear
Recovery Algorithm
(MLR)
Recover to
previous RP

Re-run of
i"fragment

27

Searching: MLR powers multiple faults

| _ _ _ Detection
Occurrence Manifestation Occurrence Manifestation Of fault €
2

Of fault ¢ Of fault ¢ Of fault ¢ Of fault ¢
1 PN 2

/2%
a I a

During search MLR creates Check Sums (CS) and compares them with previously created
CSs of RPs - sequence of matches and mismatches m and mm defines MLR termination rule.

28

Recovery support : Hardware

Hardware checking schemes must
be involved in generation of a RP and
CS for each program segment.

...The RP and associated CS should
be generated concurrently with
program execution.

For performance gain the RP storage
and checksum generator should be
directly accessed by processor

(to speed up RP generation and
recovery).

When the error is detected, by
direct intervention from Run-time
system an access to RP sequence is
enabled and searching of correct RP
initiated.

...The checksum and recovery point device has
two operating modes: the standard mode which
creates RPs and CSs and recovery mode which
generates only the checksums.

... The operating mode is configurable by the
system software (Run-time system).

Processor

Memory '

RPU

Checksum ‘ Recovery Point
storage Storage

29

File name: FT

resolved, Sept
2010

f\ " e % - % P X . - S -

A\ { » p i : g 8 "t = 3 y 3 -
62018, 'SERR SRR L 9 4 S *1¢ 48 el NN 9 0¥

W SRS O N L S TR TR et L b R SN ¥

,.
w AN Sechep
SR

First version of syndrome concept: witnessed by PhD students V Castano and A Petukhov.

30

Reconfigurability: a syndrome

- - -

- ~
- ~
.....
- ~

e
~
~
-
~

From a system software point of view the syndrome is
represented as a set of special hardware registers.

Syndrome Registers indicates the current hardware state
(current configuration, detected faults, power)...

Fault detection schemes signal to syndrome causing
hardware interrupts and initiation of GAFT by run-time system.

Run-time system, when necessary, executes reconfiguration of

hardware.

Run-time system new functions of control are:

a) reconfiguration for reliability, performance or power-saving

b) control of graceful degradation

31

IVYS SdepR3ul DYLS

NdJ 40} ¥Odd

Ajddns Jamogd

Ethernet Controller

Col-JREALN]]
PwUIBYIT B GSN

Power Processor Devices Memory
S
©|3
S | -
= | O
= o]
c = v
2| = §8 &
m.gs: | 2 ()
s.q‘,: Eg_mﬁ
- S| |l ® 3| = - | &N | :
Q " Sl=|L8|c|leo|le|([EF|lEF|lF]2|8|2|y|[on|Z
= o 2|2 | % 8|5 |2|5|8|%|25|5(3|3|3|3|3|3
e |o|lg|c|8|FE|2|E|8|&8|5|5|S|le|le|z2|=|]| e
o o(fojo0o|0)jO0O|]O0|O0O(O|]O0O|O|O]O0O}JO|O]|]O0O|O0O]|]O0]0O

SYIUMS

saa

Zee-sy

Reconfigurability: use of syndrome for memory

From defined by hardware design system configurations set memory configurations:

Mode Number of Redundancy Mode Number of used Usable Size
Number used banks memory modules in Mb
1 1 Triplicated + 1 Spare 4 4
- = I - - An example of system software
3 2 Triplicated + 1 Linear 4 8 control of memory degradation
4 1 Duplicated + 2 Spare 4 4 ST
5 1 Duplicated 4+ 1 Spare 3 4 for trlpllcated memory
6 2 Duplicated 4 8 ' a
7 3 Duplicated 4+ 2 Linear 4 12
8 2 Duplicated + 1 Linear 3 -y S —
9 4 Linear 4 16 o] -
10 3 Linear 3 12 & 111s
] : Triplication + Spare
11 2 Linear 2 8
19) Linear) [———

Areas of processor, interfacing zone, passive

zone in terms of configurations can be defined

together with their degradation sequences.

Configurations and their changes supported by

run-time system, in principle, enabling
sequential degradation “up to the last soldier”,
when single element of each section left, but
system will remains operable.

32

Phase 2
: Triplication

Phase 3

: Duplication xx11

Phase 4

. NoFT xxxl

x1xx

Phase 5
. Failure

Runtime system for FT architecture

FT interrupt handler

l

Main monitor

]

A

Runtime system
architecture

L OFF T
Stand-by

Duplicated Active

\ -

! ! ! ! }
Recirllfngig:ﬁon H;;iﬁi;e FT Scheduler Module Loader di:grslf)esrtrilcs <+
Resource Testing
management procedures
1 ’
Fault Log
Runtime
""""""""""""""""""" T
Applications PR
Runtime system has to detect hardware| | it
fault, define fault type, handle
hardware reconfiguration, P
control hardware degradation |

33

I

Faulty

Reconfigurability, FT, is it important! PRESSA

Redundancy and reconfigurability

Recoverability? of a system can be exploited
differently...

FAULT TOLERANCE

...gaining in:

Redundancyé Reconfigurability Fault model

Performance (P),
Reliability (R),

PRE-smart CC
...or saving Energy (E).

P R E
Performance | Reliability Energy Tradlng Of P’R’E - In next
generation of stand alone,

l connected and distributed

‘ P, R,ETrading?| systems is one of the biggest

challenge...

34

Future: PRESSA concept

Performance Reliability Energy

PRESSA

Smart System Architecture

More! > http://www.it-acs.co.uk/book.html

\ http://www.researchgate.net/profile/lgor_Schagaev/

35

http://www.researchgate.net/profile/Igor_Schagaev/
http://www.researchgate.net/profile/Igor_Schagaev/
http://www.it-acs.co.uk/book.html
http://www.it-acs.co.uk/book.html

Thanks for...

- Discussions, joint efforts: T Kaegi, S Monkman, B Kirk
- Discussions on redundancy:] C Laprie (late 80’s)

- Discussions on reliability vs. FT: S Birolini (2005-10)

- Discussions on GLM: Felix Friedrich

- Pictures: S Monkman,V Castano

- Publication support: Chong Chen (Chinese version)

- Publication support: Yurzin Bogdanov (Russian version)

36

Materials used...

Book: T Kaegi, | Schagaev System Software Support of Hardware Efficiency, ITACS Ltd 2013, UK

http://www.it-acs.co.uk/book.html
Papers:
http://www.researchgate.net/publication/220908686_ERA_Evolving Reconfigurable Architecture
http://www.researchgate.net/publication/255701866_Greenwich_ERA_July 2010
http://www.researchgate.net/publication/253645564_Control_Operators_vs_Graph_Logic_Model
http://www.researchgate.net/publication/2243706 14_Reliability_of malfunction_tolerance
http://www.researchgate.net/publication/252627186_Redundancy _Reconfigurability Recoverability
http://www.researchgate.net/publication/244477145_Method_and_apparatus_for_active_system_safety
http://www.researchgate.net/publication/253643647_Redundancy Classification_Principles_for_the_Design_of Fault_Tolerant_Computers
http://www.researchgate.net/publication/252628898_ Operating_system_for_fault tolerant_SIMD
http://www.researchgate.net/publication/252629068_Using Software_Recovery For Determine The_ Type_ of Hardware Faults
http://www.researchgate.net/publication/253238741_Comparative_analysis_of efficiency of algorithms_of recovery for_computing_process
http://www.researchgate.net/publication/252628869_Recovery_ Points_And_Hardware_Reliability Indices
http://www.researchgate.net/publication/252629150_Computing_process_restoration_algorithms
http://www.researchgate.net/publication/253584715_Using Data_Redundancy For_Program_Rollback
http://www.researchgate.net/publication/228728452 Hardware_Testing_on_the_Level_of Tasks

37

http://www.it-acs.co.uk/book.html
http://www.it-acs.co.uk/book.html
http://www.researchgate.net/publication/220908686_ERA_Evolving_Reconfigurable_Architecture
http://www.researchgate.net/publication/220908686_ERA_Evolving_Reconfigurable_Architecture
http://www.researchgate.net/publication/224370614_Reliability_of_malfunction_tolerance
http://www.researchgate.net/publication/224370614_Reliability_of_malfunction_tolerance
http://www.researchgate.net/publication/252627186_Redundancy__Reconfigurability__Recoverability
http://www.researchgate.net/publication/252627186_Redundancy__Reconfigurability__Recoverability
http://www.researchgate.net/publication/244477145_Method_and_apparatus_for_active_system_safety
http://www.researchgate.net/publication/244477145_Method_and_apparatus_for_active_system_safety
http://www.researchgate.net/publication/253643647_Redundancy_Classification_Principles_for_the_Design_of_Fault_Tolerant_Computers
http://www.researchgate.net/publication/253643647_Redundancy_Classification_Principles_for_the_Design_of_Fault_Tolerant_Computers
http://www.researchgate.net/publication/252628898_Operating_system_for_fault_tolerant_SIMD
http://www.researchgate.net/publication/252628898_Operating_system_for_fault_tolerant_SIMD
http://www.researchgate.net/publication/252629068_Using_Software_Recovery_For_Determine_The_Type_of_Hardware_Faults
http://www.researchgate.net/publication/252629068_Using_Software_Recovery_For_Determine_The_Type_of_Hardware_Faults
http://www.researchgate.net/publication/253238741_Comparative_analysis_of_efficiency_of_algorithms_of_recovery_for_computing_process
http://www.researchgate.net/publication/253238741_Comparative_analysis_of_efficiency_of_algorithms_of_recovery_for_computing_process
http://www.researchgate.net/publication/252628869_Recovery_Points_And_Hardware_Reliability_Indices
http://www.researchgate.net/publication/252628869_Recovery_Points_And_Hardware_Reliability_Indices
http://www.researchgate.net/publication/252629150_Computing_process_restoration_algorithms
http://www.researchgate.net/publication/252629150_Computing_process_restoration_algorithms
http://www.researchgate.net/publication/253584715_Using_Data_Redundancy_For_Program_Rollback
http://www.researchgate.net/publication/253584715_Using_Data_Redundancy_For_Program_Rollback

