
System software support of hardware efficiency

by Igor Schagaev

BCS APG 10.10.13

Plan for today -1

2

System Structure Change
 GAFT, Supportive processes
 Redundancy handling
 Reconfigurability support
 Static&Dynamic Control of RP

Theories in brief:
FT: GAFT, Processes
Redundancy
Recoverability
Reconfigurability

 Properties...
 Reliability...
 Fault tolerance...
 Performance...
 Maintainability...
 Adaptability...
 Scalability...

Life circle costs
(manufacturing,
run-time, utilization)

Energy efficiency
Ease of use
(learning, application,
maintenance)

Plan for today -11

3

 System Software for FT: Run-time system
Health monitoring - tests and checks
Recovery point support
Recovery point handling (organization, HW use)
Recovery point search
GAFT support: reconfiguration control - a syndrome

 System Software for FT: Language
Data structures
Control operators
Semaphores
Recovery point formation

 System Software & Hardware for future: PRESSA

R&D principles for computer systems

4

Redundancy Theory

Reliability
Theory

Control
Theory

Computer
Science Economics Management

Simplicity
Redundancy

Reconfigurability
Scalability
Reliability

Hardware
Active Zone:
 - Arithmetic Unit
 - Logical Unit
Interface zone
 - Bus, Configurator
 - Internal
 - External
Passive zone
 - System memory
 - User memory

System Software
Semantic
 - GLL
Structure
 - Language
 - Concurrency
Runtime
 - HW state handling
 - SW state handling
 - Recovery points

Reliability vs. performance in computer systems

5

Reliability of
the system is

limited

Performance
of the System

is limited

Number of elements in the System is n

System
Complexity is

Constant

Model of fault tolerance: introduction of GAFT

6

3.2 Fault tolerance models

M

MSystem

MFT MFault

P Q

Figure 3.5: New feature of FT system - reliability

The system model, fault model and fault tolerance model are mutually dependent

as it is shown at the bottom of Figure 3.5. Note that in the here presented approach,

the development and manufacturing cost of a solution is not considered.

Mfault is a description of all possible faults a system must tolerate. In binary logic

a typical permanent fault manifests as ”stuck at zero” or ”stuck at one”. Behavioral

faults such as Byzantine faults (malfunctions) and hidden faults (so-called latent faults)

that exist in the hardware over a long period of time do not ease the life of a system

engineer of fault tolerant systems: all described faults should be tolerated within a

limited and specified period of time. This period actually determines the availability

of the system. Fault types di↵er by their impact, as well as the way they are handled.

Thus, the fault model has its own hierarchy, including single-bit, element, behavioral

and subsystem faults. One has to accept that the fault type is varying and some action

hierarchy to tolerate them is also required. All faults types should be tolerated, as

there are no such systems called half- or semi- fault-tolerant.

The so called fault encapsulation approach to fault handling can help: due to de-

liberate design solutions it is possible to ensure that severe faults in the system will

manifest themselves as simpler to handle faults from the system’s point of view; there-

fore making the fault handling practically possible to implement. This approach will

be further developed and applied here.

RT FT system applications assume long operational life; however, fault-handling

schemes are needed much more often towards the end of the device life cycle. The

21

Generalized Algorithm of Fault
Tolerance (GAFT)

FT property will be achieved if...

‣ Detecting faults

‣ Identifying faults

‣ Identifying faulty component

‣ Hardware reconfiguration to achieve a
fault-free state

‣ Recovery from correct state(s) for
both: the system and user software

7

3.2 Fault tolerance models

MFaults

Fault

Fault Fault

MSystem

Hardware

System
Software

MFT

Figure 3.6: Fault tolerance of computer system

Up to the best knowledge of the author, there have been no representative statistics

which characterize the exact distribution of faults for computer systems. The distri-

bution of faults depends on the operational environment, for example temperature,

vibration and radiation exposure. Even so it is a well-known fact that the ratio of

malfunction to permanent faults can be up to 103 � 106. The upper bound belongs to

aerospace and aviation, principally due to malfunctions, i.e. errors induced by alpha

particles. In this sense Figure 3.4 and Figure 3.5 are transformed into Figure 3.6 which

presents various faults in the system and various possible solutions. Mfault illustrates

the fact that the fault types are not separated. For example, Byzantine faults of the

system might be ”stuck at zero” faults of the hardware that were spread throughout

the system. The latency of faults thus becomes crucial in determining the reliability of

the system. Consequently di↵erent faults require di↵erent actions and mechanisms to

tolerate them.

The system model of Figure 3.6 has overlapped SSW and HW ellipses to represent

the duality of the system: hardware and system software. Both of them must be

involved to implement fault tolerance and real time features. Overlapped HW and

SSW ellipses indicate that hardware and system software functions might be applied

to tolerate exactly the same hardware faults. Some faults might also be tolerated by

hardware or software only. Mft is ”a conceptual deliverer” of reliability for the RT FT

23

Hardware and System Software
for Fault Tolerance

New property achieved

 IF error is detected THEN

 Determine the fault type;
 IF the fault is permanent THEN
 Locate the faulty component;
 Reconfigure the HW by
 excluding faulty unit;
 END;

 IF the fault affected the SW THEN
 Locate faulty program states
 and find the correct ones
 to continue;
 Recover the system from
 preliminary stored correct SW
 states

END;
 END;

Model of fault tolerance GAFT and HW & SSW

GAFT in HW and SSW

GAFT implementations using redundancy

8

Step Description Redundancy Types
HW(I) HW(S) HW(T) SW(I) SW(S) SW(T)

0 PERIODICALLY DO
Create recovery point END

7 7

A IF error is detected THEN 2 1,3,9 1,2 8 6,9 6
ELSE

B Determine the fault type 2 1,3,9 1 8 6,9 6
C IF fault is permanent THEN
D Locate Faulty Element 2 1,3 1 8
E Reconfigure Hardware 10 10

END
F IF hardware has been reconfig-

ured OR software is a↵ected
3 8 6 5,6

G Locate faulty software states 7 7
H Recover software 9 7,9 7
I IF hardware has been reconfig-

ured THEN
J Reconfigure software 10 10

END
END

K CONTINUE

Nr. Name Redundancy
type

Description

1 HW checking HW (�S, �T) Each hardware component such as proces-
sor, memory, controllers has built-in checking
schemes to detect faults.

2 processor instruc-
tion re-execution

HW (�I, �T) The processor itself has measures to detect
faults during execution and can abort and
restart the currently running instruction

3 Triplicated
memory

HW (3S) The memory chips are triplicated and a voter
compares the output of the three memory
chips. If a deviation is detected, the major-
ity voting is used to identify the faulty chip
and the faulty value is rewritten. Read after
write ensures the proper storing of the data.

4 Duplicated
storage device

HW (2S) Storage devices such as flash cards or hard
disks are duplicated. Note that this feature
does only provide fault detection but not re-
covery

5 Duplicated
program run & in-
put validation

SW (2T) The same program is run twice with the same
input data set. The output of both programs
is then compared. Prior to running the pro-
gram, the input data is validated to conform
to a certain pattern and range.

6 Checkpoints SW (�T, �S) Periodically executed checking functions for
checking software and hardware, implemented
in pure software

7 Recovery points SW (�T, �I) Recovery points are points in time when the
complete system state is consistently stored on
a permanent storage device such as flash discs
or hard disks. They are either triggered by
software or an external interrupt.

8 CRC SW (I) The data stored to the external storage device
is protected by a CRC-32. This allows the
identification of incorrect data but no recov-
ery.

9 Watchdog HW (S) As an ultimate resort, a watchdog is used to
restart parts of, or the whole system. Hard-
ware based watchdogs can typically on restart
the whole system at once.

10 Reconfiguration
facilities

SW (S),
HW (S1, S2)

If the hardware failed, the software can recon-
figure the hardware to exclude faulty compo-
nents. In addition, the software can start al-
ternative software version which need less re-
sources to adapt to the new hardware config-
uration.

 GAFT might be implemented (and fault
tolerance achieved) using redundancies of:

Information (I)
Time (T) or
Structure (S)

 Implemented in and by:

 Hardware (HW) and/or
 Software (SW)

this way we think..

this way we do

GAFT vs. ontologies... personal comment

9

Now in BOLD: Classification of system redundancy in terms of
 Information (I), Time (T), Structure (S)

can be used to implement Fault Tolerance (GAFT).
Fault tolerance, as a process, has to be implemented through
hardware and system software combination. Both: concept and
implementation form a theory that allows to analyze, control and
predict behavior of the system with new properties.

An example of GAFT extension: “Method and apparatus of
system safety” (patent http://it-acs.co.uk/files/GB2448351B.pdf)

In contrast to popular wave of various kind of ontologies that
execute descriptive function of knowledge - GAFT and rigorous
classification of redundancy analyze & predict system behavior.

http://it-acs.co.uk/files/GB2448351B.pdf
http://it-acs.co.uk/files/GB2448351B.pdf

GAFT & redundancy theory vs. ontologies

10

Definitive function
(DF)

Characteristic Function
(CF)

Predictive function
(PF)

GAFT + + +

Ontologies + ?+

Power of any theory is in predictions and our ability to use them

GAFT impact on performance and reliability

11

performance correspond to requirements of the system with controlled degradation over
time. This figure illustrates that it is not possible to minimise for cost and maximize all
other goals and a tradeoff has to be made.

4.6 Hardware redundancy and reliability

Consider a system with given reliability which is prone to transient and permanent faults
(Figure 4.5, middle graph). If additional hardware is added to detect transient faults, the
introduced redundancy to achieve fault detection reduces the absolute reliability of the
system as more hardware is used that is prone to faults (Figure 4.5, left graph).

At the same time, if the introduced redundancy is not only used to detect transient faults but
also to tolerate them, the reliability of the system increases (Figure 4.5, right graph). Thus
part of the problem - the decreasing reliability of hardware caused by redundancy at some
point (after introduction of recoverability process P3) becomes part of a solution. Note, that
the system is however still prone to permanent faults.

Figure 4.5: Efficiency of a system with faults and checking schemes

Figure 4.5 illustrates reliability degradation and gain for the system assuming λ = 10-5,
coefficient of malfunction to permanent fault ratio k = 100, redundancy of hardware d = 3.

Clear that analysis of an effect of redundancy on the reliability of a system is worth to
clarify a bit more.

 43

calculate the overall reliability as a function of time for the whole system, if the structure of
the system is known.

The hardware redundancy used at the various steps of GAFT degrades in reliability over
time; thus the achievable performance and reliability and their degradation within the life
cycle of the RT system are dependent on each other.

Therefore, an analysis of the surface shape and evaluation of performance and reliability
degradation caused by the used redundancies should be performed for every fault tolerant
system. Figure 4.4 presents qualitatively a slope where a fault tolerant system should be
located, between the plane of requirements and curves of reliability and performance
degradation.

Figure 4.4: Tradeoffs to be made in fault tolerant system design:
Time-, Performance- and Reliability- wise

Furthermore, the introduction of the cost to implement each proposed solution allows to
summarize the system overheads required to implement fault tolerance.

There is no doubt, that a quantitative evaluation of reliability, performance and cost
overheads within one framework might be extremely efficient for justification of the design
decisions and comparison of different approaches in implementation of fault tolerance.
There is a correspondence between reliability of FT systems and steps of GAFT related to
the malfunction tolerance illustrated in Figure 4.4. Two dimensions: reliability and

 42

 Performance & Reliability of
our systems should be within
 required zone for the
 whole operation cycle...

 Reliability is
 achievable

 with system
software
support

GAFT implementation using SSW soultions

12

4.4 GAFT implementation: performance, reliability, coverage

0

1

Probability of system recovery

Fault appearance Recovery from fault

Time

“Good” FTS

“Medium” FTS “Weak” FTS

Instruction Procedure Module Task

Figure 4.3: System recovery times according to the used scheme

detect faults to a powerful storage subsystem that can detect and recover from faults.

The duplicated storage is used to detect faults, whereas the SW based CRC-32 is used

to identify the correct data which is then used to correct the faulty instance.

4.4 GAFT implementation: performance, reliability, cov-

erage

As already mentioned above and shown in Figure 4.1 and Table 4.1, the three connected

processes checking and testing, preparation for recovery and recovery might be imple-

mented by and within SSW and HW at the design phase and run time phase of the

whole system life cycle. Obviously, di↵erent implementations of the three processes dif-

fer in terms of fault coverage, achieved reliability, availability and cost. Di↵erent GAFT

algorithm implementations vary in terms of used redundancy types and therefore also

the time to complete GAFT.

The run-time phase T of the system life cycle in terms of time redundancy fault

tolerance can be considered at di↵erent levels of granularity which are related to the

scope of the program being executed. We di↵erentiate the following 5 levels: instruc-

tion, procedure, module, task and system (not shown) as presented in Figure 4.3.

The instruction level scheme assumes that when a fault appears, its influence is elim-

inated within the instruction execution, using hardware redundancy for fault detection,

fault location and fault recovery. Only hardware based redundancy HW (I, S, T) can

35

NB: if probability of recovery ≠ 1 the system is NOT fault tolerant !!!

Language reflection of FT systems

13

designed and developed with the same approach - simplicity, better say, maximum possible
simplicity.

From all possible options to support the new features of the system (will be specified
further), we will choose the simplest and the most promising choices. This means that if we
have some options to realize a new feature at the language, OS or application program
levels, we will always choose if possible the language level. This allows the omission of
complex dynamics and uncertainty during program execution. At the same time, if a new
feature requires runtime support, this support will be provided by the OS, again, by the
simplest way.

Therefore, the additional overhead by the runtime support will be as minimal as possible. It
is expected that performance and other additional overhead caused by the support of new
features will not be significant and can be in the first consideration ignored. We call this
principle essential redundancy.

In this work, system software is considered as the combination of a programming language
and an operating system with runtime support for all languages features. System software
for embedded systems usually provides some RT features. Regarding RT, we will focus in
the optimization of already existing system software specifications, efficiency analysis of
existing solutions, and where possible the reduction of complexity in these solutions. The
logic behind the research for new features is presented in Figure 6.1 as a comparison of RT
and FT.

Figure 6.1 System presentation and implementation hierarchy
(A possible realization with required features is presented in Figure 6.1 with the following meaning of capital
letters: HW - Hardware, OS - Operating System, AP - Application Program.)

New Features

HW (Timers, RISC structure
of processor etc

Language (Limitation of the
language constructions that
complicate RT capability)

OS (Management of timers
and task scheduling with RT
constraints

AP (Application specific
schemes of RT)

HW (Majority schemes,
Hamming codes)

Language (check points,
recovery points, at language
level)

OS (management of check
points, recovery points,
synchronization, HW
reconfiguration)

AP specific realization of
possible hardware deficiency
solutions

Real Time Fault tolerance

Approaches

Si

Sj

S2

Sn

S1

Figure 6.1: System representation and implementation hierarchy

the supportive means by the operating system. Assume that a program requires RT

access to program data. To guarantee the required real time constraints it is important

to exclude file structures, as these do in general not allow direct and equal (in time)

access to the data. Instead, simpler data structures with guaranteed by design equality

to access each data element or record should be introduced.

Clearly, RT as new feature requires modification of almost all elements in Figure 6.1.

RT and FT are synthetic, not elementary feature of computer systems, and possible

implementations can be located at di↵erent layers in system hierarchy.

Some well-known solutions exist for achieving RT in a computing system, such

as limiting the use of data constructs, deliberate introduction of time-limit program

control structures, exclusion of complex instructions from the processor architecture,

limitation of pipelining, strong extension of timer schemes, etc.

The ellipses in the middle of Figure 6.1 represent possible implementations of new

features. As a general rule, the top down principle should be applied, i.e. every new

feature should be implemented at the top level of the system hierarchy if possible. This

rule does also imply that implementations of new features like S1, which is implemented

on the application level, are excluded from this research. Instead, we concentrate on

new features implemented at the top layers of the presented hierarchy, assuming that

the resulting dynamic system behaviour will be under full control.

67

 62

Data structures and control operators 4 FT

14

Next we present some comments on Real Time and Fault Tolerance features and the
supportive means by the operating system. Assume that a program requires RT access to
program data.

To guarantee the required real time constraints it is important to exclude file structures, as
these do in general not allow direct and equal (in time) access to the data. Instead, simpler
data structures with guaranteed by design equality to access each data element or record
should be introduced.

Clearly, RT as new feature requires modification of almost all elements in Figure 6.1. RT
and FT are synthetic, not elementary feature of computer systems, and possible
implementations can be located at different layers in system hierarchy.

Some well-known solutions exist for achieving RT in a computing system, such as limiting
the use of data constructs, deliberate introduction of time-limit program control structures,
exclusion of complex instructions from the processor architecture, limitation of pipelining,
strong extension of timer schemes, etc.

The ellipses in the middle of Figure 6.1 represent possible implementations of new features.
As a general rule, the top down principle should be applied, i.e. every new feature should be
implemented at the top level of the system hierarchy if possible. This rule does also imply
that implementations of new features like S1, which is implemented on the application level,
are excluded from this research. Instead, we concentrate on new features implemented at the
top layers of the presented hierarchy, assuming that the resulting dynamic system behavior
will be under full control.

Let’s take language features as an example. A programming language can be de- scribed by
means of control structures, presentation of data types and the realization of sequential and
conditional expressions. For example, typical data structures are: arrays, strings, files,
records (Figure 6.2).
6. SYSTEM SOFTWARE FOR HARDWARE DEFICIENCY:
FUNCTION AND FEATURES

X

Language data
structures

Program control
structures

nWhile
New …

File

Array

Record

…

New
structures

Figure 6.2: Modification of data structure limited by application domain

Let’s take language features as an example. A programming language can be de-

scribed by means of control structures, presentation of data types and the realisation

of sequential and conditional expressions. For example, typical data structures are:

arrays, strings, files, records (Figure 6.2).

If hard realtime is required file data structures should be excluded from the set

of possible data structures in RT applications because files do not guarantee equal

access time over all files and all file data. New features might also be developed. For

RT applications, the language control structures might also be modified to provide

a higher level of control and timing conformance during program execution. Also, if

possible, control structures should be simplified as much as possible due to the strict

timing requirements and as small as possible overheads. One promising feature would

be the nWhile [136].

FT as a new feature of embedded systems, implemented on the level of system

software should be analysed in some details. First, let us consider fault tolerance as a

sequence of steps as introduced by GAFT in Section 4.

When we defined FT as GAFT it became possible to investigate how system software

should be involved to realize this algorithm. Then, all required features and mechanisms

of system software to support fault tolerance of embedded systems can be derived from

GAFT.

There are several processes and functions in the system software to provide fault

tolerance:

Research in the area of program recovery after a hardware fault has occurred is

known for 40 years. Google search shows millions of related links, including some even

68

Figure 6.2 Modification of data structure limited by application domain

 63File structure must be modified, Control operators - upgraded

2006 Felix Friedrich, et.al.:
Array-Structured Object Types for
Mathematical Programming.
JMLC 2006: PP 195-210

State of the systems, Control operators

15

C,D,P model Loop

 Level i is what has been changed in state of hardware.

 All: control, data and conditions involved must be preserved (to be able to recover...)

Control using nWhile

16

So far there is no clear separation
of the actions to react on
exceptions at the language level
for operators of repetitions.

This is because awaiting of an
event might be perfectly valid
action or ...

endless wasting due to hardware
fault that has happened.

New nwhile* loop can be useful

 * New While loop [The semantics of new while loop, Tadao Takaoka, The Computer Journal, Vol.29,No 1, 1986].

Takaoka* suggested new control operator, actually
without thinking about embedded system issues...

This operator was called nwhile, and looks like
below:

 nwhile B do S

where B is condition to enter the loop and S is
body of the loop.

Introducing precondition P and post condition Q
for this structure Takaoka suggested to use several
assignment statements S1, S2, S3,... SN in S which
affect the condition B and therefore P1 P2, P3, P4,...
PN that held immediately before S1, S2, S3,... SN

under precondition P.

Control using nWhile

17

{Pi ∧ B}Si{Qi}, (¬B
i=1

n

∏
i=1

n

∏ ∧Qi ⊃Q),P ∧¬B ⊃Q

{P}nwhileBdoS{Q}

Then we have an inference rule:

B

S1

Sn

P1 ∧ B

Q1 ∧ B

Pn ∧ B

Qn ∧ B

What it gives us? Actually, a lot.
Writing a program we use loop operators as
usual, but during compilation System Configurator
should introduce other S2-Sn conditions for loop
exit that might be connected with computer state
changes including hardware faults, timer run out
or other interruptions, including interaction with
other processes.
Then in case of hangs of the loop due to problem
within hardware and/or arrival of another signal
we are able to break loop execution and make it
visible...
hardware state change is reflected immediately
within program control construction and ... we are
not using brutal force of waiting or waste of vast
amount of another redundancy... still being
uncertain...

More control: Fault Tolerant Semaphores

18

...old Charlie stole the handle and
 the train it won't stop going
 no way to slow down...

Concurrency and parallelism confusion;

What we start in parallel eventually will end up
 with concurrency... and (possibly) vice verso...

Resolving confusion - Graph Logic Model (GLM)

Fig. 2. Control-, Data-, Predicate Model

generating ‘snapshots’ of the previous hardware states as well
as the flexibility of program segmentation and allocation.

Regretfully, in the vast majority of architectures, the
functions of data access and data processing are tightly mixed.
In a typical processor, such as the ARM, Intel and SPARC, the
arithmetic and logic unit (ALU), or even several of them, as
well as shifters, registers, internal cache, special registers and
pipeline sequencers etc. are active during the execution of
each instruction, sometimes with several data passes within a
single instruction. Thus, the complexity of monitoring and
feeding them with data even without assuming possible faults
becomes enormous: 75% of the die size is occupied by
translation look ahead buffers, caches, synchronization logic
and pipelining. However, none of them is required from the
programming language operator point of view.

The number of elements (nodes) in each of the CDP graphs
is defined by the architecture. Any current condition of
architecture related to the operator or instruction
representation (three nodes within the same layer of Fig. 2)
requires hardware state checking for parallelism or reliability
to maximize the first and limit fault propagation for the second

The complexity and the implementation cost of
parallelization or fault tolerance are directly related to the
amount of the resulting modifications of the hardware and
program states. CDP shows that when P (predicate) is used
only for the selection of the program flow, a special operator
and instruction can be defined to generate the current value of
P and store the result in a register. Such modifications of the
instruction set restrict changes of predicates. CDP
simplification eases the implementation at the hardware and
system software level. For the implementation of
parallelization at the level of the instruction set, the design
objectives will be:

- Minimization of the state space that needs to be saved
before each instruction’s execution

- Implementation of “as simple as possible” logic to form
predicates

- Mapping of language operators as close as possible to the
modified instruction set of the processor

Hardware instructions represent data, control and predicate

dependencies of language operators at execution time. Thus an
analysis of CDP for language and hardware will clarify their
interaction consistently and exclude “improvements” that

Fig. 3. Graph Logic Model

drive to mutual loss. Studying the CDP scheme also enables
checking of potential program parallelism in all three graph
dependencies. Surprisingly, this is not the whole picture. As a
further development of parallelization and concurrency
reduction we introduce the graph–logic-model (GLM).

Every meta-program structure might be described using
GLM (Graph Logic Model) that provides a scheme to
redevelop existing programs into their maximum parallel and
minimum concurrent form, limited only by available hardware
resources. An indicative example how GLM and GLL work
together using a program control graph is presented in Fig. 3.

Note that GLM might be applied for any of graph of the
CDP model. GLM uses logical operators from the set {AND,
OR, XOR} for every program or hardware scheme that it
describes. These operators are allocated for the input and
output of each vertex. A vertex might be an operator,
instruction or state. Vertex a in the example of Fig. 3 may be
described thus as:

a: OR-(!b, "d), AND+(#b, $c) (1)

“-“ stands for every logical operator of an output link and

“+” for every input link, while !, ", #, $ are weights or
priorities assigned for the link.

Until now research in parallelism was mostly targeted at
finding parallel branches of programs and independent data
elements. However, expecting pure parallelism is hardly
feasible: what is initiated as parallel segments ends up
ultimately in concurrent mode, competing for a resource such
as a socket, printer, data concentrator, etc. The rare exception,
such as graphic processors with high numbers of SIMD like
processors just proves the rule. The simple notation of Fig. 3
can be used as a first step in the formation of the graph logic
language to describe program structures and hardware
structures consistently in terms of co-existing concurrency and
parallelism.

GLM explicitly separates parallel and concurrent elements
in the system description by introducing logic operators in the
program graph for incoming and outgoing ends of edges.
Thus, the application of the logic operator XOR (exclusive
OR) on an input or output of an edge defines ALL possible
concurrencies in the program graphs. In turn, all possible
parallelism in the control graph are defined by finding all
outgoing or incoming edges explicitly described by the AND

!

!

a b

d

c

e f

"

$

+

-

a :XOR− (αb,γ d),XOR+ (βb,δc)

a :XOR− (αb,γ d),AND+ (βb,δc)

XOR and AND will resolve confusion. Known
solutions semaphores, monitors are all down to
XOR.... But we should be using both operators...

Still... Why Fault Tolerance is required?

...Waiting mad driver to release train handle
 might be costly... (Jethro Tull, Locomotive breath)

Time redundancy - waiting for few ms for
processes duration within dozens of ns? ... It is

NOT the solution.
Information and structure redundancies should

be used instead...

GLM - is structural redundancy...
Information?

Control: Fault Tolerant Semaphores -11

19

Mad driver, also known as “dining philosopher” should be trained to be polite...

We need to teach our dining philosophers to be polite, and ... "die like a man",
especially when they are in critical section.

What does it mean? The one, being in critical section, if sick or dies must:

- Return all spaghetti, forks - resources he uses
- Inform the rest by "I am dying" message...

Then “the rest” (Runtime system in our case...) has to :

- Reduce number of voters for further voting in sessions of concurrency resolution
- Mark a messenger as suspected (not excluded, or dead) and place in a special pool
- Schedule a “reincarnation procedure”

 (...power of malfunction might be big, duration long (200ms+), but “treatable”...)

This scheme has been called FT semaphores...

FT Semaphores hardware support: T-logic scheme

20

Collaboration of checking and recovery processes at the
ault

resilient task scheduling and HW / SW fault handling

Fault tolerant semaphores: A new concept that eliminates

 changes of hardware conditions using the
notion of hardware states and transitions, as shown in Fig. 6.

is
If an element is

it is not active but can be activated in a

If a fault is detected, the affected HW element is set into

ACTIVE ZONE

ERRIC

PASSIVE ZONE

RAM RAM RAM

Memory used by
ERRIC

Idle
memory

AR
CH

ITE
CT

UR
E B

US

for one computer for multiprocessor system

 Fig. 8. Indicative ERA structure

Each element can be turned off individually to decrease power
consumption. Note that the structure assumes only one leading
element at a time enforced by a “rotation” of the T-logic
element. T-logic makes the whole ERA possible to operate
until the last soldier stands: i.e. until a single processor, called
ERRIC, and a single memory element can communicate
(Fig.8).

VI. CONCLUSION AND FUTURE WORK
This paper presents concepts and design ideas to cope with

known drawbacks of computer architectures. ERA
reconfigurability is represented at the programming language
and the run-time system, which will result ultimately in a
simple, yet scalable, reliable system.

REFERENCES
[1] Goldstine, A. and Goldstine, H. H. (1946) ENIAC, The Electronic

Numerical Integrator. Math Tables and Other Aids to Computation, vol.
1, pp. 97-110

[2] Report R-127 (1947) Whirlwind I Computer Block Diagrams. Everett,
R.R., and Swain, F.E. MIT Servomechanisms Laboratory.

[3] Whirlwind I, Master Drawing List And General Rack Layout Of
Computer. (1952), MIT, Department of Electrical Engineering,
Cambridge.

[4] Smithsonian Institute (1990) Computer history collection
http://americanhistory.si.edu/collections/ comphist/

[5] Hofstra University, (1999), History in the Computing Curriculum
Appendix 4 1950 – 1959.
www.comphist. org/pdfs/CompHist_9812tla4.pdf

[6] Holland, J.H. (1960) Iterative circuit computers, IRE-AIEE-ACM '60
(Western): Papers presented at the May 3-5, 1960, western joint IRE-
AIEE-ACM computer conference, San Francisco, California, pp. 259-
265, ACM, New York, USA

[7] Newell, A. (1960) A On programming a highly parallel machine to be an
intelligent technician, IRE-AIEE-ACM '60 (Western): Papers presented
at the May 3-5, 1960, western joint IRE-AIEE-ACM computer
conference, May 3-5, pp. 267-282, ACM, New York

[8] Schwartz, E. (1961) An Automatic Sequencing Procedure with
Application to Parallel Programming, Journal of the ACM (JACM), v.8
n.4, p.513-537, ACM, New York

[9] Slotnick, D. L., et al. (1962) The SOLOMON Computer, AFIPS '62
(Fall): Proceedings of the December 4-6, 1962, fall joint computer
conference, Philadelphia, pp. 97-107, ACM, New York.

[10] Squire, J. S. and Palais, S. M. (1963) Physical and Logical Design of a
Highly Parallel Computer, Proc. SJCC 1963.

[11] Gosden, J. (1966) Explicit parallel processing description and control in
programs for multi- and uni-processor computers, AFIPS '66 (Fall):
Proceedings of the November 7-10, 1966, fall joint computer
conference, pp. 651 – 660, ACM, New York

[12] Nair, R (2002) Effect of increasing chip density on the evolution of
computer architectures, IBM Journal of Research and Development, vol.
46, num. 2/3, IBM

[13] LaPedus, M., EETimes (2003) Intel gears up 90-nm processor, chip set
rollout http://www.eetimes. com/conf/idf/showArticle.jhtml?
articleID=10800811&kc=3172 (November 2009)

[14] IBM, IBM Power6 Microprocessor and IBM System p 570, May 21,
2007

[15] Kinnersley, Bill (1991) The language list.
http://people.ku.edu/~nkinners/LangList/Extras/langlist.htm, (November
2009)

[16] Berka, S. (2001) Operating System Documentation Project.
http://www.operating-system.org/betriebssys tem/_english/index.htm,
(Nov 2009)

[17] Ames, B. (2007) Intel tests chip design with 80-core processor.
http://www.macworld.com/news/2007 /02/12/intel/ (November 2009)

[18] Schagaev I. (2008) Reliability of malfunction tolerance, Proceedings of
the IMCSIT, vol. 3, Wisla, October 20 – 22, 2008, pp. 733-737, IEEE

[19] Tursky W.M and Wasserman, A. (1978) Computer programming
methodology, SIGSOFT Softw. Eng. Notes, vol. 3, num. 2, pp. 20-21,
ACM, NY

[20] Wirth, N. (1989) Programming in Modula-2, Springer Verlag, Berlin.
[21] Wirth, N. and Gutknecht, J. (1992) Project Oberon: The Design of an

Operating System and Compiler, Addison-Wesley, Amsterdam
[22] Wirth, N. (1988) The Programming Language Oberon. Software –

Practice and Experience, vol.18, num. 7, pp. 671-690, John Wiley &
Sons Inc., NY

[23] Flynn, M. (1972) Some Computer Organizations and Their
Effectiveness, IEEE Transactions on Computers, vol. C-21, pp. 948-
960, IEEE.

[24] Fisher A. (1983) Very Long Instruction Word architectures and the ELI-
512, ISCA '83: Proc-ngs of the 10th annual int-l symp on Computer
architecture, Stockholm, Sweden, pp. 140-150, ACM, New York

[25] Dijkstra E. W. (1965) Solution of a problem in concurrent programming
control, Communications of the ACM, vol. 8, num. 9, pp. 569, ACM
New York.

[26] Lamport. L. (1983) The weak Byzantine Generals problem, Journal of
the ACM, vol. 30, num., pp.668–676, ACM New York.

[27] Lamport, L. and Melliar-Smith, P. (1985) Synchronizing clocks in the
presence of faults. Journal of the ACM, vol. 32, num.1, pp. 52–78,
ACM, NY

[28] Gutknecht J. (2006) The Dining Philosophers Problem Revisited, JMLC
2006, Lecture Notes in Computer Science, vol. 4228, pp. 377 – 382,
Springer-Verlag, Berlin Heidelberg

[29] Hennesy, J. and Patterson, D. (2008) Computer organisation and design,
4th ed., Morgan Kaufmann

[30] Bryant, R. and O'Hallaron, D. (2002) Computer Systems: A
programmer's perspective, Prentice Hall

[31] Asanovic et al., The Landscape of Parallel Computing Research: A
View from Berkeley. Technical Report Nr. UCB/EECS-2006-183, Dec
2006

 - HW element “suspected” should “switch itself” -
 (left RAM above);

 - System should be able to return it in action after
 full-size check, if it was recovered.

GAFT: System checking by system software - I

21

all about testing at the level of program -

7 Testing and Checking

In Section 4, we introduced the processes of checking and testing, the first of the three main
processes of GAFT. In this chapter we discuss the hardware checking further, first software
based hardware checking and second hardware based checking.

For the software based hardware checking, we show what a software based test should
include, when they are the preferred choice over hardware based checking schemes and
especially how such tests can be scheduled in the system without interfering with ongoing
real time tasks.

In the second part we concentrate on hardware based checking and introduce the syndrome,
a mechanism to signal to the operating system that the hardware detected an error. We then
show the steps the runtime system performs to eliminate the fault and in case of permanent
errors how the software can reconfigure the hardware to exclude the faulty element. We also
explain in which cases software has to adapt to the new hardware topology.

We start by explaining how software based checks can be used to detect hardware faults.

7.1 Hardware checking process

Consider a sequence of tests and programs denoted T and P in Figure 7.1. The initial test T
is executed before a task execution and guarantees the hardware consistency, i.e. it
guarantees that there is no fault at that time in the system. However, if a permanent fault
happens, for example a stuck bit, the effect of the fault is basically permanent. When a
permanent fault occurs immediately after the first test or during the program execution, it
might be in principle invisible for an arbitrary long time (latent period).

Figure 7.1: Ensuring of hardware integrity through program execution

Therefore, a second sequential test is required right after the program execution to guarantee
that no permanent fault occurred since the last test. For periodic tasks which are often used
in control systems, we slightly adapt this scheme as shown in Figure 7.2.

7.1 Hardware checking process

T P

T

 Time axis

Figure 7.1: Ensuring of hardware integrity through program test execution

Figure 7.2: Regular sequence of program execution with test of hardware integrity to
detect permanent faults

Therefore, a second sequential test is required right after the program execution to

guarantee that no permanent fault occurred since the last test. For periodic tasks

which are often used in control systems, we slightly adapt this scheme as shown in

Figure 7.2.

But what happens if a malfunctions occurs during the execution of P? The e↵ect

of the malfunction might not last until P finishes and T can thus not detect the fault,

therefore the malfunction is not detected at all. Malfunctions can be detected by double

execution of the same program with comparison C of the result and the result state

space. Figure 7.3 illustrates this scenario. It is important to note that for periodic

tasks, the persistent state of the program, i.e. the program state which is used in the

next computation as input data must also be compared, as malfunctions might a↵ect

data which is no longer used in the current computation but in the next. Permanent

faults however cannot be detected with the comparison scheme alone, as they might

a↵ect both executions of P . In other words, the scenario in Figure 7.2 can only detect

permanent faults whereas the scenario in Figure 7.3 can only detect malfunctions. The

combined power to detect malfunctions and permanent faults is illustrated in Figure

7.4 where C is used to detect malfunctions and T to detect permanent faults. Assuming

that C triggers an error but T does not, it is clear that a malfunction occurred. Another

run of program P with comparison to the previous two runs can identify the run where

the malfunction occurred.

In the following analysis, we concentrate on the detection of permanent faults only

and use only T in the analysis. The detection of malfunctions can be considered as

included in the following analysis if the double execution of P with following C as a

70

 68

7.1 Hardware checking process

Figure 7.1: Ensuring of hardware integrity through program test execution

T T P

Time axis

Figure 7.2: Regular sequence of program execution with test of hardware integrity to
detect permanent faults

Therefore, a second sequential test is required right after the program execution to

guarantee that no permanent fault occurred since the last test. For periodic tasks

which are often used in control systems, we slightly adapt this scheme as shown in

Figure 7.2.

But what happens if a malfunctions occurs during the execution of P? The e↵ect

of the malfunction might not last until P finishes and T can thus not detect the fault,

therefore the malfunction is not detected at all. Malfunctions can be detected by double

execution of the same program with comparison C of the result and the result state

space. Figure 7.3 illustrates this scenario. It is important to note that for periodic

tasks, the persistent state of the program, i.e. the program state which is used in the

next computation as input data must also be compared, as malfunctions might a↵ect

data which is no longer used in the current computation but in the next. Permanent

faults however cannot be detected with the comparison scheme alone, as they might

a↵ect both executions of P . In other words, the scenario in Figure 7.2 can only detect

permanent faults whereas the scenario in Figure 7.3 can only detect malfunctions. The

combined power to detect malfunctions and permanent faults is illustrated in Figure

7.4 where C is used to detect malfunctions and T to detect permanent faults. Assuming

that C triggers an error but T does not, it is clear that a malfunction occurred. Another

run of program P with comparison to the previous two runs can identify the run where

the malfunction occurred.

In the following analysis, we concentrate on the detection of permanent faults only

and use only T in the analysis. The detection of malfunctions can be considered as

included in the following analysis if the double execution of P with following C as a

70

Figure 7.2: Regular sequence of program with test of hardware integrity to detect permanent faults

But what happens if a malfunction occurs during the execution of P? The effect of the
malfunction might not last until P finishes and T can thus not detect the fault, therefore the
malfunction is not detected at all. Malfunctions can be detected by double execution of the
same program with comparison C of the result and the result state space. Figure 7.3
illustrates this scenario. It is important to note that for periodic tasks, the persistent state of
the program, i.e. the program state which is used in the next computation as input data must
also be compared, as malfunctions might affect data which is no longer used in the current
computation but in the next.

Permanent faults, however, cannot be detected with the comparison scheme alone, as they
might affect both executions of P. In other words, the scenario in Figure 7.2 can only detect
permanent faults whereas the scenario in Figure 7.3 can only detect malfunctions. The
combined power to detect malfunctions and permanent faults is illustrated in Figure 7.4
where C is used to detect malfunctions and T to detect permanent faults. Assuming that C
triggers an error but T does not, it is clear that a malfunction occurred. Another run of
program P with comparison to the previous two runs can identify the run where the
malfunction occurred.

In the following analysis, we concentrate on the detection of permanent faults only and use
only T in the analysis. The detection of malfunctions can be considered as included in the
following analysis if the double execution of P with following C as a whole is treated as task
P in the following analysis.

Figure 7.3: Ensuring the hardware integrity to detect malfunction faults

Figure 7.4: Ensuring of hardware integrity through program and test to detect both types of faults

7.1 Hardware checking process

Figure 7.3: Ensuring the hardware integrity through program test execution to detect
malfunctions

Figure 7.4: Ensuring of hardware integrity through program test execution to detect
malfunctions and permanent faults

whole is treated as task P in the following analysis.

A testing phase is required initially at boot up time to guarantee the correctness of

the hardware and also a periodic test before and after the execution of a program. The

applied tests might vary in depth (coverage), type of faults and the set of the tested

hardware.

Every hardware component has typically at least one assigned test but might also

have more than one that could di↵er on the implementation level.

Software based tests need a processor and memory for the test execution even if

a peripheral device is tested. In order to guarantee that faults in other hardware

components that are not subject of the test itself do not have an influence on the

outcome of the test, the order of the tests must follow the principle of growing core:

If a test of a hardware component ui has implicit dependencies on another hardware

component uj , the test of uj must be executed first.

If the resources needed by a task are known in advance, it is su�cient to run after

the execution only the testing procedures of the accessed hardware resources (selective

testing), again by using the principle of growing core. This way, the system stays fully

operational even in the case of present faults in some hardware components that are not

in use. Spare components can be used for the relocation of programs that were running

on faulty hardware components. Of course, it is also necessary independent to this

scenario to periodically test the full hardware as otherwise faulty spare components are

considered as fully operational and might be used again in a subsequent reconfiguration

71

7.1 Hardware checking process

Figure 7.3: Ensuring the hardware integrity through program test execution to detect
malfunctions

Figure 7.4: Ensuring of hardware integrity through program test execution to detect
malfunctions and permanent faults

whole is treated as task P in the following analysis.

A testing phase is required initially at boot up time to guarantee the correctness of

the hardware and also a periodic test before and after the execution of a program. The

applied tests might vary in depth (coverage), type of faults and the set of the tested

hardware.

Every hardware component has typically at least one assigned test but might also

have more than one that could di↵er on the implementation level.

Software based tests need a processor and memory for the test execution even if

a peripheral device is tested. In order to guarantee that faults in other hardware

components that are not subject of the test itself do not have an influence on the

outcome of the test, the order of the tests must follow the principle of growing core:

If a test of a hardware component ui has implicit dependencies on another hardware

component uj , the test of uj must be executed first.

If the resources needed by a task are known in advance, it is su�cient to run after

the execution only the testing procedures of the accessed hardware resources (selective

testing), again by using the principle of growing core. This way, the system stays fully

operational even in the case of present faults in some hardware components that are not

in use. Spare components can be used for the relocation of programs that were running

on faulty hardware components. Of course, it is also necessary independent to this

scenario to periodically test the full hardware as otherwise faulty spare components are

considered as fully operational and might be used again in a subsequent reconfiguration

71

 69

 Regular sequence of program with test of
 hardware integrity to detect permanent faults

7.1 Hardware checking process

Figure 7.1: Ensuring of hardware integrity through program test execution

Figure 7.2: Regular sequence of program execution with test of hardware integrity to
detect permanent faults

Therefore, a second sequential test is required right after the program execution to

guarantee that no permanent fault occurred since the last test. For periodic tasks

which are often used in control systems, we slightly adapt this scheme as shown in

Figure 7.2.

But what happens if a malfunctions occurs during the execution of P? The e↵ect

of the malfunction might not last until P finishes and T can thus not detect the fault,

therefore the malfunction is not detected at all. Malfunctions can be detected by double

execution of the same program with comparison C of the result and the result state

space. Figure 7.3 illustrates this scenario. It is important to note that for periodic

tasks, the persistent state of the program, i.e. the program state which is used in the

next computation as input data must also be compared, as malfunctions might a↵ect

data which is no longer used in the current computation but in the next. Permanent

faults however cannot be detected with the comparison scheme alone, as they might

a↵ect both executions of P . In other words, the scenario in Figure 7.2 can only detect

permanent faults whereas the scenario in Figure 7.3 can only detect malfunctions. The

combined power to detect malfunctions and permanent faults is illustrated in Figure

7.4 where C is used to detect malfunctions and T to detect permanent faults. Assuming

that C triggers an error but T does not, it is clear that a malfunction occurred. Another

run of program P with comparison to the previous two runs can identify the run where

the malfunction occurred.

In the following analysis, we concentrate on the detection of permanent faults only

and use only T in the analysis. The detection of malfunctions can be considered as

included in the following analysis if the double execution of P with following C as a

70

Figure 7.2: Regular sequence of program with test of hardware integrity to detect permanent faults

But what happens if a malfunction occurs during the execution of P? The effect of the
malfunction might not last until P finishes and T can thus not detect the fault, therefore the
malfunction is not detected at all. Malfunctions can be detected by double execution of the
same program with comparison C of the result and the result state space. Figure 7.3
illustrates this scenario. It is important to note that for periodic tasks, the persistent state of
the program, i.e. the program state which is used in the next computation as input data must
also be compared, as malfunctions might affect data which is no longer used in the current
computation but in the next.

Permanent faults, however, cannot be detected with the comparison scheme alone, as they
might affect both executions of P. In other words, the scenario in Figure 7.2 can only detect
permanent faults whereas the scenario in Figure 7.3 can only detect malfunctions. The
combined power to detect malfunctions and permanent faults is illustrated in Figure 7.4
where C is used to detect malfunctions and T to detect permanent faults. Assuming that C
triggers an error but T does not, it is clear that a malfunction occurred. Another run of
program P with comparison to the previous two runs can identify the run where the
malfunction occurred.

In the following analysis, we concentrate on the detection of permanent faults only and use
only T in the analysis. The detection of malfunctions can be considered as included in the
following analysis if the double execution of P with following C as a whole is treated as task
P in the following analysis.

Figure 7.3: Ensuring the hardware integrity to detect malfunction faults

Figure 7.4: Ensuring of hardware integrity through program and test to detect both types of faults

7.1 Hardware checking process

C P P

 Time axis

Figure 7.3: Ensuring the hardware integrity through program test execution to detect
malfunctions

Figure 7.4: Ensuring of hardware integrity through program test execution to detect
malfunctions and permanent faults

whole is treated as task P in the following analysis.

A testing phase is required initially at boot up time to guarantee the correctness of

the hardware and also a periodic test before and after the execution of a program. The

applied tests might vary in depth (coverage), type of faults and the set of the tested

hardware.

Every hardware component has typically at least one assigned test but might also

have more than one that could di↵er on the implementation level.

Software based tests need a processor and memory for the test execution even if

a peripheral device is tested. In order to guarantee that faults in other hardware

components that are not subject of the test itself do not have an influence on the

outcome of the test, the order of the tests must follow the principle of growing core:

If a test of a hardware component ui has implicit dependencies on another hardware

component uj , the test of uj must be executed first.

If the resources needed by a task are known in advance, it is su�cient to run after

the execution only the testing procedures of the accessed hardware resources (selective

testing), again by using the principle of growing core. This way, the system stays fully

operational even in the case of present faults in some hardware components that are not

in use. Spare components can be used for the relocation of programs that were running

on faulty hardware components. Of course, it is also necessary independent to this

scenario to periodically test the full hardware as otherwise faulty spare components are

considered as fully operational and might be used again in a subsequent reconfiguration

71

7.1 Hardware checking process

Figure 7.3: Ensuring the hardware integrity through program test execution to detect
malfunctions

Figure 7.4: Ensuring of hardware integrity through program test execution to detect
malfunctions and permanent faults

whole is treated as task P in the following analysis.

A testing phase is required initially at boot up time to guarantee the correctness of

the hardware and also a periodic test before and after the execution of a program. The

applied tests might vary in depth (coverage), type of faults and the set of the tested

hardware.

Every hardware component has typically at least one assigned test but might also

have more than one that could di↵er on the implementation level.

Software based tests need a processor and memory for the test execution even if

a peripheral device is tested. In order to guarantee that faults in other hardware

components that are not subject of the test itself do not have an influence on the

outcome of the test, the order of the tests must follow the principle of growing core:

If a test of a hardware component ui has implicit dependencies on another hardware

component uj , the test of uj must be executed first.

If the resources needed by a task are known in advance, it is su�cient to run after

the execution only the testing procedures of the accessed hardware resources (selective

testing), again by using the principle of growing core. This way, the system stays fully

operational even in the case of present faults in some hardware components that are not

in use. Spare components can be used for the relocation of programs that were running

on faulty hardware components. Of course, it is also necessary independent to this

scenario to periodically test the full hardware as otherwise faulty spare components are

considered as fully operational and might be used again in a subsequent reconfiguration

71

 69

7.1 Hardware checking process

Figure 7.1: Ensuring of hardware integrity through program test execution

Figure 7.2: Regular sequence of program execution with test of hardware integrity to
detect permanent faults

Therefore, a second sequential test is required right after the program execution to

guarantee that no permanent fault occurred since the last test. For periodic tasks

which are often used in control systems, we slightly adapt this scheme as shown in

Figure 7.2.

But what happens if a malfunctions occurs during the execution of P? The e↵ect

of the malfunction might not last until P finishes and T can thus not detect the fault,

therefore the malfunction is not detected at all. Malfunctions can be detected by double

execution of the same program with comparison C of the result and the result state

space. Figure 7.3 illustrates this scenario. It is important to note that for periodic

tasks, the persistent state of the program, i.e. the program state which is used in the

next computation as input data must also be compared, as malfunctions might a↵ect

data which is no longer used in the current computation but in the next. Permanent

faults however cannot be detected with the comparison scheme alone, as they might

a↵ect both executions of P . In other words, the scenario in Figure 7.2 can only detect

permanent faults whereas the scenario in Figure 7.3 can only detect malfunctions. The

combined power to detect malfunctions and permanent faults is illustrated in Figure

7.4 where C is used to detect malfunctions and T to detect permanent faults. Assuming

that C triggers an error but T does not, it is clear that a malfunction occurred. Another

run of program P with comparison to the previous two runs can identify the run where

the malfunction occurred.

In the following analysis, we concentrate on the detection of permanent faults only

and use only T in the analysis. The detection of malfunctions can be considered as

included in the following analysis if the double execution of P with following C as a

70

Figure 7.2: Regular sequence of program with test of hardware integrity to detect permanent faults

But what happens if a malfunction occurs during the execution of P? The effect of the
malfunction might not last until P finishes and T can thus not detect the fault, therefore the
malfunction is not detected at all. Malfunctions can be detected by double execution of the
same program with comparison C of the result and the result state space. Figure 7.3
illustrates this scenario. It is important to note that for periodic tasks, the persistent state of
the program, i.e. the program state which is used in the next computation as input data must
also be compared, as malfunctions might affect data which is no longer used in the current
computation but in the next.

Permanent faults, however, cannot be detected with the comparison scheme alone, as they
might affect both executions of P. In other words, the scenario in Figure 7.2 can only detect
permanent faults whereas the scenario in Figure 7.3 can only detect malfunctions. The
combined power to detect malfunctions and permanent faults is illustrated in Figure 7.4
where C is used to detect malfunctions and T to detect permanent faults. Assuming that C
triggers an error but T does not, it is clear that a malfunction occurred. Another run of
program P with comparison to the previous two runs can identify the run where the
malfunction occurred.

In the following analysis, we concentrate on the detection of permanent faults only and use
only T in the analysis. The detection of malfunctions can be considered as included in the
following analysis if the double execution of P with following C as a whole is treated as task
P in the following analysis.

Figure 7.3: Ensuring the hardware integrity to detect malfunction faults

Figure 7.4: Ensuring of hardware integrity through program and test to detect both types of faults

7.1 Hardware checking process

Figure 7.3: Ensuring the hardware integrity through program test execution to detect
malfunctions

Figure 7.4: Ensuring of hardware integrity through program test execution to detect
malfunctions and permanent faults

whole is treated as task P in the following analysis.

A testing phase is required initially at boot up time to guarantee the correctness of

the hardware and also a periodic test before and after the execution of a program. The

applied tests might vary in depth (coverage), type of faults and the set of the tested

hardware.

Every hardware component has typically at least one assigned test but might also

have more than one that could di↵er on the implementation level.

Software based tests need a processor and memory for the test execution even if

a peripheral device is tested. In order to guarantee that faults in other hardware

components that are not subject of the test itself do not have an influence on the

outcome of the test, the order of the tests must follow the principle of growing core:

If a test of a hardware component ui has implicit dependencies on another hardware

component uj , the test of uj must be executed first.

If the resources needed by a task are known in advance, it is su�cient to run after

the execution only the testing procedures of the accessed hardware resources (selective

testing), again by using the principle of growing core. This way, the system stays fully

operational even in the case of present faults in some hardware components that are not

in use. Spare components can be used for the relocation of programs that were running

on faulty hardware components. Of course, it is also necessary independent to this

scenario to periodically test the full hardware as otherwise faulty spare components are

considered as fully operational and might be used again in a subsequent reconfiguration

71

7.1 Hardware checking process

Figure 7.3: Ensuring the hardware integrity through program test execution to detect
malfunctions

T C P T P

Time axis

Figure 7.4: Ensuring of hardware integrity through program test execution to detect
malfunctions and permanent faults

whole is treated as task P in the following analysis.

A testing phase is required initially at boot up time to guarantee the correctness of

the hardware and also a periodic test before and after the execution of a program. The

applied tests might vary in depth (coverage), type of faults and the set of the tested

hardware.

Every hardware component has typically at least one assigned test but might also

have more than one that could di↵er on the implementation level.

Software based tests need a processor and memory for the test execution even if

a peripheral device is tested. In order to guarantee that faults in other hardware

components that are not subject of the test itself do not have an influence on the

outcome of the test, the order of the tests must follow the principle of growing core:

If a test of a hardware component ui has implicit dependencies on another hardware

component uj , the test of uj must be executed first.

If the resources needed by a task are known in advance, it is su�cient to run after

the execution only the testing procedures of the accessed hardware resources (selective

testing), again by using the principle of growing core. This way, the system stays fully

operational even in the case of present faults in some hardware components that are not

in use. Spare components can be used for the relocation of programs that were running

on faulty hardware components. Of course, it is also necessary independent to this

scenario to periodically test the full hardware as otherwise faulty spare components are

considered as fully operational and might be used again in a subsequent reconfiguration

71

 69

 Regular sequence of program with test of
 hardware integrity to detect permanent faults
 and malfunctions

A testing phase is required initially at boot up time to guarantee the correctness of the hardware; periodic test is required before and after
the execution of a program. The applied tests might vary in depth (coverage), type of faults and the set of the tested hardware.

 Regular sequence of program to detect
hardware malfunctions

GAFT: System checking by system software - II

22

Testing at the level of tasks...

 Tasks and tests combined

 NB1 If condition of hardware component Ui has implicit dependencies on component Uj, test of Uj must be executed first.

example the testing schemes discover stuck bits in memory, it is sufficient to recover
programs that access the affected location and not all programs that are using this memory
module.

Device drivers could for example provide their own testing schemes for their respective
device. Especially for devices, one could think of having a combination of hardware and
software based testing. I/O devices such as UARTs could effectively be tested by cross
connecting the input and output wires by very simple additional hardware logic and sending
various bit patterns over this loopback connection.

Timely task completions in real time systems is a key requirement, therefore the testing
overheads should be reduced as much as possible when and where possible.

Figure 7.5 shows of an example of three tasks with corresponding tests. The assumption in
this case is a time slice based scheduler which distributes time slices to the running
processes. In this example, the processes run to completion and are called periodically by
the scheduler. Three tasks are running, each with its own test (the green boxes) at the end of
the task execution.

Figure 7.5: Tasks and tests combined

The test only checks the resources the respective process needs, which results in different
test execution times. The task execution is only considered as successful if the test at the
end of the task is successful. If the test failed, the task is re-executed by using the same
input data set as in the first try. Difficulties arise if the task performs I/O on hardware
devices or communicates with other tasks which we discuss in Section 8.

7.2 Analysis of checking process

Applications are nowadays so complex that they tend to saturate the computing system they
are running on, which limits diagnosis possibilities. Especially in multi processor systems, a
high interest arises to test some hardware units when other hardware units execute tasks.
This approach has been called the sliding dropping diagnosis (SDD) [71].

Multiprocessor architectures fit very well the scheme of concurrent software based
checking. In principle, two SDD types can be distinguished, namely synchronous and
asynchronous SDD. An example: The CTSS Operating System for the CRAY-1 [52]

7.1 Hardware checking process

Time axis

Tasks

Clock tick

Figure 7.5: Tasks & Tests combined

process. A full hardware test also allows the system software to monitor the current full

state of the hardware and take appropriate actions if necessary. If no spare components

are available in the the system, all programs depending on this component must be

obviously terminated. If no essential program is a↵ected by this component, the system

can continue operating in a degraded mode.

For diagnostic and monitoring purposes the results of the tests should be available

for the software or even external systems. We propose therefore to organise the test

results of hardware based test in so-called test syndromes (see Section 7.3). For every

hardware component, for example the register file, ALU, internal bus or device con-

trollers, the checking procedures present their result in the form of a syndrome to the

software, indicating in binary form the state of the device. By grouping all syndromes

together in one register, the software has a very e↵ective way to check the integrity of

the system. In case of a non-zero syndrome further analysis of the hardware conditions

are required, especially when the malfunction duration is long.

Dependent on the used hardware checking scheme, it is not only possible to signal

a fault to the runtime, but also provide more information to the runtime system to

ease recovery. If for example the testing schemes discover stuck bits in memory, it is

su�cient to recover programs that access the a↵ected location and not all programs

that are using this memory module.

Device drivers could for example provide their own testing schemes for their respec-

tive device. Especially for devices, one could think of having a combination of hardware

and software based testing. I/O devices such as UARTs could e↵ectively be tested by

cross connecting the input and output wires by very simple additional hardware logic

and sending various bit patterns over this loopback connection.

Timely task completions in real time systems is a key requirement, therefore the testing

overheads should be reduced as much as possible when and where possible.

Figure 7.5 shows of an example of three tasks with corresponding tests. The as-

72

 71

Three tasks are running, each with
its own test (the green boxes) at the

end of the task execution.

 NB2 It is wise to wait task completion and then run test of hardware instead of stop, unload and reload task after test.

GAFT: System checking by system software - II

23

Testing at the level of tasks...

 An algorithm for scheduling and imbedding tests of hardware used by each task
 should suit various number of tasks and time constrains for group of task completion...

The test of task i is performed asynchronously, if it is possible to schedule it in the timeframe ti to di
as long as all other tasks can still meet their deadlines and only one test is executed simultaneously.
Otherwise, execute the test synchronously. More see pp 68 -79 (http://www.it-acs.co.uk/book.html)

Tasks are running, each with its
own test (the green boxes) at the

end of the task execution and, when
required unload and reload

tasks

𝑡௦ௗ଴

𝑡௔ௗଷ

𝑡௔ௗଶ

𝑡ଵ 𝑡௔ௗଵ

𝑡ଶ

𝑡ଷ

d1

d2

d3

d0

𝑇௨ 𝑇௥

GAFT: Recovery by System Software

24

Recovery points (RP)

RP formation RP monitoring/handling

RP formation rules

Language support Run-time system
support

Time Structure Information

Timer of and for:

 - Process
 - Module
 - Task
 - System RQ
 - Runtime control

Plain: back-up for

 - Task
 - Program
 - Full size back-up

Structure-wise:

 - Hierarchical (static)
 - Save as you go (dynamic)

Condition of:

- a System:

 - a Task (dynamic
 priority)

 - Run-time control
 - Check sums of RPs

RP structure support Search of correct RPs

Linear

Check-sums

Indexing

Hardware support Search control

“Fake” formation

Binary

Modified linear

Power of searchRP handling

RP formation: structure-wise scheme

25

Recovery points (RP)

Hierarchy of program Save as you go

Static, Language Language with Run-
time system support

0

1

2

3

0 0

1

2

0

1

0

1

2

3

RP1

RP4

RP2

RP3

N Wirth’s structural programming can be exploited:

1) Structural features and limitation of visibility for lower layer
variables reduce a volume of recovery points;

2) Only variables that are accessible at the level are required
to save at recovery point;

! !

Along the tree, selected path:

1) Select subset of visible variables you use
2) Create a “Key” , i.e. collection of variables to a
 given leaf

K=<V01...,V0x><V11,...,V1i><V21,...,V2z><V31,...,V3k> <V41,...,V4m >

Recovery Points Support Summary

26

- The original program code should be re-processed, introducing a generation of
 recovery point at the beginning of each hierarchy level;

- During compilation a data structure with a list of accessible variables should
 be formed for each level of a program nesting;

- The program begins an execution of each successive level by calling run-time system
 indicating the level number, the number of accessible modules and list of variables;

- Run-time system has to monitor keys along executing a program and generate
 checksums along execution of recovery point;

- Run-time system can “simulate” recovery point formation when it is required;

- Execution of “generate recovery point” action consists of recording of variables
 accordingly key generated scheme along the execution a program: Save as you go

NB. Efficiency of “static and dynamic economy” methods of recovery point formation
was proven to be at the order of magnitude better than other known schemes of
recovery point schemes.

 Searching of correct state of a program: MLR

27

...Faults might stay latent in the system for a long time until they trigger an error, i.e. it
implies that the last recovery points have been damaged by the latent fault...

9.2 Modified linear algorithm

The system model used in the previous chapter was based on the assumption of having a fail
stop system. Recovery consisted of restoring the last consistent recovery line and continue
processing.

However, in real life, faults might stay latent in the system for a long time until they trigger
an error, which also implies that the last recovery line still contains the latent fault.
Optimizations such as reducing the required storage by only keeping the last recovery line
can thus lead to a non recoverable system that must be restarted.

What happens if we change the system model from a fail stop system, to a system where
faults can stay undetected for a a long time in the system? In this case, a method is required
to find the exact appearance of the fault in the system, i.e. the last recovery point which was
not affected by the fault.

We present here an approach of how to achieve this, the so called modified linear recovery.
This section is based on the following papers [144, 122, 61, 123] and adapted to our needs.

Using an ordered set of recovery points (Figure 9.1), we split the program execution into
pieces of exactly the same execution length. 9.2 Modified linear algorithm

m mm mmmmmm mm

i

RP

i -1

RP RPRPRP RPRP RPRP

ǻ m R

Recover to
previous RP

Re-run of
 i th fragment

Malfunction
manifestation
 ta

Hardware
checking scheme
detects fault

Fault
detection

Direct Effect
of malfunction

Figure 9.1: Ordered Set of Recovery Points

e↵ectively saves time for generation of the recovery point and also for looking up a

correct RPk from which the task can be continued. Using the method of modified

linear recovery (MLR) when the type of hardware faults is known, is is possible to

even recover from multiple sequential faults. To solve this problem we must answer the

following questions:

1. Is the redundancy provided by recovery points su�cient to determine the type of

a fault?

2. Is it possible when a permanent fault (failure) occurs to determine a correct RP?

3. Does the MLR algorithm remain valid for the case of successively occurring faults?

9.2.1 Characteristics of the modified linear recovery algorithm

The purpose of the modified linear recovery algorithm is the detection and elimination

of hardware faults during operation, followed by a search for the last correct program

state to recover the system. The procedure for the search is explained further down.

Concurrent to ongoing tasks, recovery points are generated together with their

fingerprints, the checksums. Recovery, is in essence done in a two step approach. First,

the system is recovered to the state of the last recovery point RPi, and the processing is

resumed. If the test procedures that identified the error in the first place do no longer

detect the error, the system is considered as restored. If however the testing procedures

142

Figure 9.1: Ordered steps of recovery points and iteration of recovery

 136

Modified Linear
Recovery Algorithm

(MLR)

 Searching: MLR powers multiple faults

28

To eliminate the detected fault ε2 the recovery is recursively done, starting from the last
recovery point until the first . . . m mm . . . transition is found. The program execution is
then resumed, as the fault ε2 is now eliminated.

The detection of ε1 can happen anytime, even after the detection of ε2. In the given example
the detection of ε1 occurs after the elimination of ε2 and triggers a new recovery process.

As ε2 is already completely eliminated, the CSi and CSi’ second match-mismatch sequence
does no longer exist and therefore the CSi and CSi’ comparisons match. The MLR process
can thus successfully recover from ε1.

In other words, several successively occurring faults do not affect the correctness of the
MLR algorithm as long as the fault manifestation do not overlap in time, i.e. at least one
recovery point exists between the fault manifestations.

If no recovery point was generated between the two fault manifestations, recovery is also
successful, but the two faults are no longer distinguishable. From the system point of view,
it just recovered from one fault.

Figure 9.5: Permanent HW fault elimination, case c)

9.2 Modified linear algorithm

m mm mmmmm mmmm

Manifestation
Of fault İ

1

mm

Manifestation
Of fault İ

2

Occurrence
Of fault İ

2

Occurrence
Of fault İ

1

Detection
Of fault İ

2

Figure 9.5: Permanent HW fault elimination, phase c

for finding the correct state of the computing process and for the elimination of

any corruptions due to the fault.

9.2.3 The MLR algorithm in case of several successive faults

The MLR algorithm is not restricted to single faults and allows to find the correct state

of a process also in case of several successive faults. Consider the example shown in

Figure 9.5 which represents a case of two successive faults (malfunctions) ✏1 and ✏2.

When the MLR algorithm is applied to this scenario, we get the sequence

m. . .mm . . .m . . .mm . . ., again by comparing the respective CSi and CS0
i. By analysing

the CS and CS0 match and mismatch sequences, we can identify the di↵erent stages

of the MLR algorithm. To eliminate the detected fault ✏2, the recovery is recursively

done, starting from the last recovery point until the first . . .m �mm. . . transition is

found. The program execution is then resumed, as the fault ✏2 is now eliminated.

The detection of ✏1 can happen anytime, even after the detection of ✏2. In the

given example the detection of ✏1 occurs after the elimination of ✏2 and triggers a new

recovery process. As ✏2 is already completely eliminated, the CSi and CS0
i second

match-mismatch sequence does no longer exist and therefore the CSi and CS0
i compar-

isons match. The MLR process can thus successfully recover from ✏1. In other words,

several successively occurring faults do not a↵ect the correctness of the MLR algorithm

as long as the fault manifestation do not overlap in time, i.e. at least one recovery point

exists between the fault manifestations. If no recovery point was generated between the

two fault manifestations, recovery is also successful, but the two faults are no longer

distinguishable. From the system point of view, it just recovered from one fault.

148

 143

During search MLR creates Check Sums (CS) and compares them with previously created
CSs of RPs - sequence of matches and mismatches m and mm defines MLR termination rule.

 Recovery support : Hardware

29

8.4 Hardware support for recovery point creation

In order to keep the system overhead low, it is proposed here to implement the actual
recovery storage procedure in hardware. We introduce therefore the recovery point unit
(RPU) which represents a hardware component that is capable to create a recovery point on
a non-volatile medium.

It should thus be able to interpret the above introduced format of a recovery point in
memory and store it. To speed up performance and to have a measure to detect corrupt
recovery points, the RPU should be able to calculate a checksum on the fly of the just
created recovery point and store it as well together with the recovery point. This checksum
helps to identify corrupt recovery points which cannot be used to recover a system.

The RPU should be placed directly on the CPU bus (Figure 8.3) and should have direct
access to the memory in order to get maximum speed for the generation of recovery points
as well as during recovery.

Processor

Checksum
storage

Recovery Point
Storage

RPU

Memory

Figure 8.3 Hardware design with RPU

 119

 Hardware checking schemes must
 be involved in generation of a RP and
 CS for each program segment.

 ...The RP and associated CS should
 be generated concurrently with
 program execution.

 For performance gain the RP storage
 and checksum generator should be
 directly accessed by processor
 (to speed up RP generation and
 recovery).

 When the error is detected, by
 direct intervention from Run-time
 system an access to RP sequence is
 enabled and searching of correct RP
 initiated.

 ...The checksum and recovery point device has
 two operating modes: the standard mode which
 creates RPs and CSs and recovery mode which
 generates only the checksums.
 ...The operating mode is configurable by the
 system software (Run-time system).

Reconfigurability: a syndrome for FT

30

First version of syndrome concept: witnessed by PhD students V Castano and A Petukhov.

File name: FT
resolved, Sept

2010

Reconfigurability: a syndrome

31

Power

Po
w

er

CU Re
gi

st
er

s

Ar
ith

m
et

ic
 U

ni
t

Lo
gi

ca
l U

ni
t

Ti
m

er

Ra
nd

om
 N

um
be

r G
en

.

In
te

rr
up

t C
on

tr
ol

le
r

Co
ns

ol
e

St
ab

le
 S

to
ra

ge

U
AR

T1

U
AR

T2

U
AR

T3

RO
M

1

RO
M

2

RA
M

1

RA
M

2

RA
M

3

RA
M

4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Processor Devices Memory

Figure 7.12 Syndrome fault management

Figure 7.13 Syndrome power configuration

NB. Pictures of syndrome (Figures 7.12 and 7.13, 7.14) for our proposed architecture
ERA were prepared by Victor Castano.

As an example platform to illustrate the syndrome, we use here the ERRIC simulator with
all its devices as it is implemented. See Appendix A for more details about the simulator.
The syndrome implementation in hardware is currently ongoing but we still give in this
section some implementation guidelines.

The structure of the syndrome is subdivided in three different management areas: fault
management area, configuration management area and power management area. The three
management areas are each reflected by a hardware register visible from software in
memory mapped I/O. The respective registers for the simulator are shown in Figures 7.12,
7.13 and 7.14.

The fault management area reflects the hardware status of the different areas of a computing
system: processor, memory and interfaces. A full ”Zero” syndrome in this area indicates that
the hardware checking schemes did not detect any fault in the system. If a fault in a specific
location of the system architecture is detected, the value of the bit corresponding to the area
is set to ”1”. The ROM group in our example consists of two modules and therefore the
syndrome of ROM condition has two positions with zero when the ROM works correctly.

 84

Slightly better syndrome picture...

 From a system software point of view the syndrome is
 represented as a set of special hardware registers.

 Syndrome Registers indicates the current hardware state
 (current configuration, detected faults, power)...

 Fault detection schemes signal to syndrome causing
 hardware interrupts and initiation of GAFT by run-time system.

Run-time system, when necessary, executes reconfiguration of
 hardware.

 Run-time system new functions of control are:

 a) reconfiguration for reliability, performance or power-saving
 b) control of graceful degradation

Reconfigurability: use of syndrome for memory

32

From defined by hardware design system configurations set memory configurations:

uncertain. Software could for example switch periodically from mode 1 to mode 3 and
check the integrity of the spare module, preferably in idle time of the system.

If no safety critical applications run on the system, the memory configuration can be set to
mode 9 where maximum capacity is available but no HW fault tolerance.

Table 7.1: Possible memory configurations

Mode
Number

Number of
used banks

Redundancy Mode Number of used
memory modules

Usable Size
in Mb

1 1 Triplicated + 1 Spare 4 4
2 1 Triplicated 3 4
3 2 Triplicated + 1 Linear 4 8
4 1 Duplicated + 2 Spare 4 4
5 1 Duplicated + 1 Spare 3 4
6 2 Duplicated 4 8
7 3 Duplicated + 2 Linear 4 12
8 2 Duplicated + 1 Linear 3 8
9 4 Linear 4 16
10 3 Linear 3 12
11 2 Linear 2 8
12 1 Linear 1 4

16-bit wide memory modules could also be used instead of 32-bit modules. In this case, two
memory modules must be combined to allow 32-bit memory access.

The possible configurations with four 16-bit modules are limited to duplication only as
triplication would need at least six memory modules.

If 16-bit modules are used, an emergency mode could be implemented, using only one 16-
bit module, mainly for signaling the need for maintenance or if space and speed (two
memory accesses for loading one 32-bit word) are sufficient, to run the most critical
applications.

!
7.3.3 Interfacing zone: the syndrome as memory configuration mechanism

Until now we just showed the properties and advantages of such a configurable memory
controller. What we did not explain is how such a controller could be implemented while
still providing interconnection and dynamic exclusion of faulty components from the
operational system.

For this, we suggest to use a so called T-logic inter-connector, illustrated in Figure 7.15, an
idealized concept of a hardware switch in the form of a ”T”, that can connect or disconnect
(for fault containment) from the memory controller by ”rotating”.

This logic is used in the hardware architecture to form a hardware configuration scheme
adjustable to the software or hardware requirements when a hardware element itself detects

 89

Phase 1
Triplication + Spare

Degradation Modes starting from Triplication

Phase 2
Triplication

Phase 3
Duplication

111s

111x 11x1 1x11 x111

11xx 1x1x x1x1

FPhase 5
Failure

xx11. . .

Phase 4
No FT 1xxx x1xx xxx1 xxx1

Figure 7.17 : Degradation phases of a triplicated memory system

7.3.4.1 Degradation phases of a triplicated system

The most reliable configuration in terms of fault detection and transparent recovery is
triplication. As we have four memory modules available, we use the last one as spare. The
proposed degradation phases of the triplicated system are shown in Figure 7.17. Every box
represents one possible configuration of the system. The four numbers in the boxes
represent the four memory modules and their current configuration.

The position in the four numbers identifies the memory module and the value the memory
bank the module is attached to. x stands for failed, and s for spare chip. An example: 1xx1
means that memory modules number 1 and 4 are connected to bank 1, and the memory
modules 2 and 3 failed or are at least disabled. Bank 1 is duplicated, as two memory
modules are attached to this bank.

By convention, we assume that bank 1 is always in use as ERRIC supports only absolute
addressing. In other words, if code is supposed to run directly from ROM, all memory

 92

An example of system software
control of memory degradation

for triplicated memory

 Areas of processor, interfacing zone, passive
 zone in terms of configurations can be defined
 together with their degradation sequences.
 Configurations and their changes supported by
 run-time system, in principle, enabling
sequential degradation “up to the last soldier”,
 when single element of each section left, but
system will remains operable.

Runtime system for FT architecture

33 Figure 7.19 : HW state diagram

After boot up, all devices are either in state OFF or in one of the blue operation modes. As
the BIST automatically configures the most reliable possible memory configuration, the
initial states of all devices must be acquired by reading the syndrome. Here a short list of all
possible states and a short description:

OFF The device is currently not in use, powered off and isolated for fault containment;
Stand-by The device is powered on but not yet in use, i.e. in case of memory not yet assigned to a
memory bank. In case of reconfiguration, all transitions go through this state.
Active The device is in use in a non redundant mode. In case of memory, the memory module is
assigned to a bank in linear non redundant mode;
Duplicated The device acts in duplicated mode;
Triplicated The device acts in triplicated mode;
Suspected As soon as a fault in the hardware is detected, the state of the affected hardware
component is set to suspected and the testing procedures are initiated to diagnose the fault. If a
device is often in this state, this could be a hint that the device might fail in the near future. For
reliability purposes it might therefore be sensible to replace the component with a spare one;
Faulty Dependent on the analysis outcome, the state is then set either to Faulty if a permanent fault
was diagnosed or back to the previous state if it was only a malfunction. A device in the state Faulty
is powered off.

7.4 Software Support for Hardware Reconfiguration

Duplicated

Suspected

Faulty

Triplicated Active

Stand-by

OFF

Figure 7.19: HW state diagram

are part of the runtime system can register checking procedures for their respective

hardware component.

When the system is turned on, the built in self test procedures (BIST) embedded in

the system are executed. These run tests on all devices, using the principle of growing

core, to ensure the integrity of all devices. If a failure is detected, the syndrome

sets the appropriate fault bits. The BIST is also responsible to initiate the system

to a predefined working state, i.e. the most reliable mode with all working available

resources. When the BIST finishes and passes control to the runtime system, the

runtime passes control to the hardware monitor which first mirrors the current state

in software and then reconfigures the system according to the need of the program. As

the syndrome might trigger an interrupt right after boot up, the syndrome interrupt

handler has to ensure that the stack pointer is valid and if not initialise it.

Every hardware component which is managed by the syndrome is in exactly one

state of Figure 7.19. This state diagram shows also all possible transitions between

states, allowing the hardware monitor to reconfigure the system in a consistent way.

In fact, all of the above presented cases in the degradation scenarios where software

intervention is required, are clearly identifiable in Figure 7.19. Intervention is only

101

 99

FT interrupt handler

Main monitor

Reconfiguration
monitor

Hardware
monitor FT Scheduler Module Loader System

diagnostics

Fault Log

Testing
procedures

Runtime

User space

Resource
management

Applications

Runtime system
architecture

Runtime system has to detect hardware
fault, define fault type, handle

hardware reconfiguration,
control hardware degradation

Reconfigurability, FT, is it important? PRESSA

34

E

R P

PRE-smart CC

Recoverability?

P, R, E Trading?

Redundancy

FAULT TOLERANCE

Reconfigurability Fault model

Performance

Reliability

Energy

Redundancy and reconfigurability
of a system can be exploited
differently...

...gaining in:

 Performance (P),
 Reliability (R),

...or saving Energy (E).

Trading of P,R,E - in next
generation of stand alone,
connected and distributed
systems is one of the biggest
challenge...

Future: PRESSA concept

35

 P R E S S A

Performance Reliability Energy

Smart System Architecture

http://www.researchgate.net/profile/Igor_Schagaev/

http://www.it-acs.co.uk/book.htmlMore?

http://www.researchgate.net/profile/Igor_Schagaev/
http://www.researchgate.net/profile/Igor_Schagaev/
http://www.it-acs.co.uk/book.html
http://www.it-acs.co.uk/book.html

Thanks for...

36

 - Discussions, joint efforts: T Kaegi, S Monkman, B Kirk

 - Discussions on redundancy: J C Laprie (late 80’s)

 - Discussions on reliability vs. FT: S Birolini (2005-10)

 - Discussions on GLM: Felix Friedrich

 - Pictures: S Monkman, V Castano

 - Publication support: Chong Chen (Chinese version)

 - Publication support: Yurzin Bogdanov (Russian version)

Materials used...

37

 Book: T Kaegi, I Schagaev System Software Support of Hardware Efficiency, ITACS Ltd 2013, UK
 http://www.it-acs.co.uk/book.html
Papers:
http://www.researchgate.net/publication/220908686_ERA_Evolving_Reconfigurable_Architecture
http://www.researchgate.net/publication/255701866_Greenwich_ERA_July_2010
 http://www.researchgate.net/publication/253645564_Control_Operators_vs_Graph_Logic_Model
http://www.researchgate.net/publication/224370614_Reliability_of_malfunction_tolerance
http://www.researchgate.net/publication/252627186_Redundancy__Reconfigurability__Recoverability
http://www.researchgate.net/publication/244477145_Method_and_apparatus_for_active_system_safety
http://www.researchgate.net/publication/253643647_Redundancy_Classification_Principles_for_the_Design_of_Fault_Tolerant_Computers
http://www.researchgate.net/publication/252628898_Operating_system_for_fault_tolerant_SIMD
http://www.researchgate.net/publication/252629068_Using_Software_Recovery_For_Determine_The_Type_of_Hardware_Faults
http://www.researchgate.net/publication/253238741_Comparative_analysis_of_efficiency_of_algorithms_of_recovery_for_computing_process
http://www.researchgate.net/publication/252628869_Recovery_Points_And_Hardware_Reliability_Indices
http://www.researchgate.net/publication/252629150_Computing_process_restoration_algorithms
http://www.researchgate.net/publication/253584715_Using_Data_Redundancy_For_Program_Rollback
http://www.researchgate.net/publication/228728452_Hardware_Testing_on_the_Level_of_Tasks

http://www.it-acs.co.uk/book.html
http://www.it-acs.co.uk/book.html
http://www.researchgate.net/publication/220908686_ERA_Evolving_Reconfigurable_Architecture
http://www.researchgate.net/publication/220908686_ERA_Evolving_Reconfigurable_Architecture
http://www.researchgate.net/publication/224370614_Reliability_of_malfunction_tolerance
http://www.researchgate.net/publication/224370614_Reliability_of_malfunction_tolerance
http://www.researchgate.net/publication/252627186_Redundancy__Reconfigurability__Recoverability
http://www.researchgate.net/publication/252627186_Redundancy__Reconfigurability__Recoverability
http://www.researchgate.net/publication/244477145_Method_and_apparatus_for_active_system_safety
http://www.researchgate.net/publication/244477145_Method_and_apparatus_for_active_system_safety
http://www.researchgate.net/publication/253643647_Redundancy_Classification_Principles_for_the_Design_of_Fault_Tolerant_Computers
http://www.researchgate.net/publication/253643647_Redundancy_Classification_Principles_for_the_Design_of_Fault_Tolerant_Computers
http://www.researchgate.net/publication/252628898_Operating_system_for_fault_tolerant_SIMD
http://www.researchgate.net/publication/252628898_Operating_system_for_fault_tolerant_SIMD
http://www.researchgate.net/publication/252629068_Using_Software_Recovery_For_Determine_The_Type_of_Hardware_Faults
http://www.researchgate.net/publication/252629068_Using_Software_Recovery_For_Determine_The_Type_of_Hardware_Faults
http://www.researchgate.net/publication/253238741_Comparative_analysis_of_efficiency_of_algorithms_of_recovery_for_computing_process
http://www.researchgate.net/publication/253238741_Comparative_analysis_of_efficiency_of_algorithms_of_recovery_for_computing_process
http://www.researchgate.net/publication/252628869_Recovery_Points_And_Hardware_Reliability_Indices
http://www.researchgate.net/publication/252628869_Recovery_Points_And_Hardware_Reliability_Indices
http://www.researchgate.net/publication/252629150_Computing_process_restoration_algorithms
http://www.researchgate.net/publication/252629150_Computing_process_restoration_algorithms
http://www.researchgate.net/publication/253584715_Using_Data_Redundancy_For_Program_Rollback
http://www.researchgate.net/publication/253584715_Using_Data_Redundancy_For_Program_Rollback

