
The future is parallel
The future of parallel

is declarative
Simon Peyton Jones
Microsoft Research

Thesis
 The free lunch is over. Muticores are here. We have

to program them. This is hard. Yada-yada-yada.
 Programming parallel computers

 Plan A. Start with a language whose computational fabric
is by-default sequential, and by heroic means make the
program parallel

 Plan B. Start with a language whose computational fabric
is by-default parallel

 Every successful large-scale application of parallelism
has been largely declarative and value-oriented

 SQL Server

 LINQ

 Map/Reduce

 Scientific computation

 Plan B will win. Parallel programming will increasingly
mean functional programming

Any
effect

X := In1
X := X*X
X := X + In2*In2

C, C++, Java, C#, VB Excel, Haskell

 Do this, then do that
 “X” is the name of a cell

that has different values
at different times

 No notion of sequence
 “A2” is the name of a

(single) value

Commands, control flow Expressions, data flow

Pure
(no effects)

Spectrum

Imperative

X := In1
X := X*X
X := X + In2*In2

C, C++, Java, C#, VB

 Do this, then do that
 “X” is the name of a cell

that has different values
at different times

Commands, control flow

Computational model:
• program counter
• mutable state

Inherently sequential

Excel, Haskell

 No notion of sequence
 “A2” is the name of a

(single) value

Expressions, data flow

A2 = A1*A1
B2 = B1*B1
A3 = A2+B2

*

*
+

A1

B1
B2

A2
A3

Functional

Computational model:
expression evaluation

Inherently parallel

Functional programming to the
rescue?

 “Just use a functional language and your troubles are
over”

 Right idea:
 No side effects Limited side effects
 Strong guarantees that sub-computations do not interfere

 But far too starry eyed. No silver bullet:
 Need to “think parallel”: if the algorithm has sequential data

dependencies, no language will save you!
 Parallelism is complicated: different applications need

different approaches.

Haskell
 The only programming language that takes purity

really seriously
 21 years old this year... yet still in a ferment of

development
 Particularly good for Domain Specific Embedded

Languages (aka libraries that feel easy to use).
 Offers many different approaches to

parallel/concurrent programming, each with a
different cost model.
 No up-front choice
 You can use several paradigms in one program

Multicore

Use Haskell!

Task parallelism
Explicit threads,

synchronised via locks,
messages, or STM

Data parallelism
Operate simultaneously on bulk

data

Modest parallelism
Hard to program

Massive parallelism
Easy to program
Single flow of control
Implicit synchronisation

Semi-implicit
parallelism
Evaluate pure
functions in

parallel

Modest parallelism
Implicit synchronisation
Easy to program

Slogan: no silver bullet: embrace diversity

This talk
Lots of different concurrent/parallel
programming paradigms (cost models)

in Haskell

No Silver Bullet

Many different
parallelism paradigms

One language

One program uses
multiple paradigms

Road mapMulticore

Semi-implicit
parallelism
Evaluate pure
functions in

parallel

Modest parallelism
Implicit synchronisation
Easy to program

Slogan: no silver bullet: embrace diversity

Use Haskell!

N queens

[1]

[1,1]

[2,1]

[3,1]

[4,1]

...

[1,3,1]

[2,3,1]

[3,3,1]

[4,3,1]

[5,3,1]

[6,3,1]

...

[]

[2]

...

Start
here

Place n queens on an n x n board
such that no queen attacks any
other, horizontally, vertically, or

diagonally

NQueens

 Sequential code
nqueens :: Int -> [[Int]]
nqueens n = subtree n []

subtree :: Int -> [Int] -> [[Int]]
subtree 0 b = [b]
subtree c b = concat $
 map (subtree (c-1)) (children b)

children :: [Int] -> [[Int]]
children b = [(q:b) | q <- [1..n],
 safe q b]

Place n queens on an n x n board
such that no queen attacks any
other, horizontally, vertically, or

diagonally

NQueens

 Parallel code

 Speedup: 3.5x on 6 cores

nqueens :: Int -> [[Int]]
nqueens n = subtree n []

subtree :: Int -> [Int] -> [[Int]]
subtree 0 b = [b]
subtree c b = concat $
 parMap (subtree (c-1)) (children b)

children :: [Int] -> [[Int]]
children b = [(q:b) | q <- [1..n],
 safe q b]

Place n queens on an n x n board
such that no queen attacks any
other, horizontally, vertically, or

diagonally

Works on the
sub-trees in

parallel

Semi-implicit parallelism

Good things
 Parallel program guaranteed not to change the result
 Deterministic: same result every run
 Very low barrier to entry
 “Strategies” to separate algorithm from parallel structure
 Implementation free to map available parallelism to actual

architecture

map :: (a->b) -> [a] -> [b]
parMap :: (a->b) -> [a] -> [b]

Semi-implicit parallelism

Bad things
 Poor cost model; all too easy to fail to

evaluate something and lose all parallelism
 Not much locality; shared memory
 Over-fine granularity can be a big issue

Profiling tools can help a lot

ThreadScope

 As usual, watch out for Amdahl’s law!

Cryptographic Protocol Shapes Analyzer (CPSA)
http://hackage.haskell.org/package/cpsa

 Find authentication or secrecy failures in cryptographic
protocols. (Famous example: authentication failure in the Needham-
Schroeder public key protocol.)

 About 6,500 lines of Haskell
 “I think it would be moronic to code CPSA in C or Python. The algorithm is

very complicated, and the leap between the documented design and the
Haskell code is about as small as one can get, because the design is
functional.”

 One call to parMap

 Speedup of 3x on a quad-core --- worthwhile when many
problems take 24 hrs to run.

Summary of semi-implicit

 Modest but worthwhile speedups (3-10) for
very modest investment

 Limited to shared memory; 10’s not 1000’s of
processors

 You still have to think about a parallel
algorithm! (Eg John Ramsdell had to
refactor his CPSA algorithm a bit.)

Road mapMulticore
Parallel

programming
essential

Task parallelism
Explicit threads,

synchronised via locks,
messages, or STM

Expressing concurrency
 Lots of threads, all performing I/O

 GUIs
 Web servers (and other servers of course)
 BitTorrent clients

 Non-deterministic by design
 Needs

 Lightweight threads
 A mechanism for threads to coordinate/share
 Typically: pthreads/Java threads + locks/condition

variables

http://hackage.haskell.org/package/cpsa

What you get in Haskell
 Very very lightweight threads

 Explicitly spawned, can perform I/O
 Threads cost a few hundred bytes each
 You can have (literally) millions of them
 I/O blocking via epoll => OK to have hundreds of

thousands of outstanding I/O requests
 Pre-emptively scheduled

 Threads share memory
 Coordination via Software Transactional

Memory (STM)

I/O in Haskell

• Effects are explicit in the type system
– (reverse “yes”) :: String -- No effects
– (putStr “no”) :: IO () -- Can have effects

• The main program is an effect-ful
computation
– main :: IO ()

main = do { putStr (reverse “yes”)
 ; putStr “no” }

Mutable state

Reads and
writes are 100%
explicit!

You can’t say
(r + 6), because
r :: Ref Int

main = do { r <- newRef 0
; incR r
; s <- readRef r
; print s }

incR :: Ref Int -> IO ()
incR r = do { v <- readRef r

; writeRef r (v+1)
 }

newRef :: a -> IO (Ref a)
readRef :: Ref a -> IO a
writeRef :: Ref a -> a -> IO ()

Concurrency in Haskell

webServer :: RequestPort -> IO ()
webServer p = do { conn <- acceptRequest p

 ; forkIO (serviceRequest conn)
 ; webServer p }

serviceRequest :: Connection -> IO ()
serviceRequest c = do { … interact with client … }

 forkIO spawns a thread
 It takes an action as its argument

forkIO :: IO () -> IO ThreadId

No event-loop spaghetti!

Coordination in Haskell

main = do { r <- newRef 0
; forkIO (incR r)
; incR r
; ... }

incR :: Ref Int -> IO ()
incR r = do { v <- readRef r
 ; writeRef r (v+1) }

 How do threads coordinate with each other?

Aargh!
A race

What’s wrong with locks?

A 10-second review:
 Races: due to forgotten locks
 Deadlock: locks acquired in “wrong” order.
 Lost wakeups: forgotten notify to condition

variable
 Diabolical error recovery: need to restore

invariants and release locks in exception handlers

 These are serious problems. But even worse...

Locks are absurdly hard to get right

Scalable double-ended queue: one lock per cell

No interference if
ends “far enough”

apart

But watch out when the queue
is 0, 1, or 2 elements long!

Locks are absurdly hard to get right

Coding style
Difficulty of concurrent

queue

Sequential code Undergraduate

Locks are absurdly hard to get right

Coding style
Difficulty of concurrent

queue

Sequential code Undergraduate

Locks and
condition
variables

Publishable result at
international conference

Atomic memory transactions

Coding style
Difficulty of concurrent

queue

Sequential code Undergraduate

Locks and
condition
variables

Publishable result at
international conference

Atomic blocks Undergraduate

Atomic memory transactions

atomically { ... sequential get code ... }

 To a first approximation, just write the sequential code,
and wrap atomically around it

 All-or-nothing semantics: Atomic commit
 Atomic block executes in Isolation
 Cannot deadlock (there are no locks!)
 Atomicity makes error recovery easy

(e.g. exception thrown inside the get code)

ACID

Atomic blocks in Haskell

 atomically is a function, not a syntactic
construct

 A worry: what stops you doing incR outside
atomically?

atomically :: IO a -> IO a

main = do { r <- newRef 0
; forkIO (atomically (incR r))
; atomically (incR r)
; ... }

STM in Haskell

 Better idea:
atomically :: STM a -> IO a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM
()

incT :: TVar Int -> STM ()
incT r = do { v <- readTVar r; writeTVar r (v+1) }
main = do { r <- atomically (newTVar 0)

; forkIO (atomically (incT r))
; atomic (incT r)
; ... }

STM in Haskell

 Can’t fiddle with TVars outside atomic
block [good]

 Can’t do IO inside atomic block [sad, but
also good]

 No changes to the compiler
(whatsoever). Only runtime system and
primops.

atomic :: STM a -> IO a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

Lots more…
http://research.microsoft.com/~simonpj/papers/stm

 STM composes beautifully
 MVars for efficiency in (very common)

special cases
 Blocking (retry) and choice (orElse) in STM
 Exceptions in STM

Example: Warp
http://docs.yesodweb.com/blog/announcing-warp

 A very simple web server written in Haskell
 full HTTP 1.0 and 1.1 support,
 handles chunked transfer encoding,
 uses sendfile for optimized static file serving,
 allows request bodies and response bodies to be processed in

constant space

 Protection for all the basic attack vectors: overlarge
request headers and slow-loris attacks

 500 lines of Haskell (building on some amazing
libraries: bytestring, blaze-builder, iteratee)

Example: Warp
http://docs.yesodweb.com/blog/announcing-warp

 A new thread for each user request
 Fast, fast

Pong requests/sec

Example: Combinatorrent
http://jlouis.github.com/combinatorrent/

 Again, lots of threads: 400-600 is typical
 Significantly bigger program: 5000 lines of

Haskell – but
way smaller
than the
competition

 Built on STM
 Performance:

roughly
competitive

H
ask

el
l

(Not shown: Vuse 480k lines)

E
rl

ang

80,000
loc

Distributed memory
 So far everything is shared memory
 Distributed memory has a different cost model

 Think message passing…
 Think Erlang…

Erlang
 Processes share nothing; independent GC;

independent failure
 Communicate over channels
 Message communication = serialise to

bytestream, transmit, deserialise
 Comprehensive failure model

 A process P can “link to” another Q
 If Q crashes, P gets a message
 Use this to build process monitoring apparatus
 Key to Erlang’s 5-9’s reliability

Cloud Haskell
 Provide Erlang as a library – no language

extensions needed
newChan :: PM (SPort a, RPort a)
send :: Serialisable a => SPort a -> a -> PM a
receive :: Serialisable a => RPort a -> PM a
spawn :: NodeId -> PM a -> PM PId

Process

May contain many
Haskell threads,

which share via STM

Channels

Cloud Haskell
 Many static guarantees for cost model:

 (SPort a) is serialisable, but not (RPort a)
=> you always know where to send your message

 (TVar a) not serialisable
=> no danger of multi-site STM

http://jlouis.github.com/combinatorrent/

K-means clustering
The k-means clustering algorithm takes a set of data points
and groups them into clusters by spatial proximity.

Initial clusters have
random centroids

After first iteration After third iterationAfter second iteration

Converged

●Start with Z lots of data points in N-dimensional space
●Randomly choose k points as ”centroid candidates”
●Repeat:

1. For each data point, find the nearerst ”centroid candidate”
2. For each candidate C, find the centroid of all points nearest to C
3. Make those the new centroid candidates, and repeat

Master

Mapper 1

Mapper 2

Mapper 3

Mapper n

Reducer
1

Reducer
k

MapReduce

Resultconver
ged?

●Start with Z lots of data points in N-dimensional space
●Randomly choose k points as ”centroid candidates”
●Repeat:

1. For each data point, find the nearerst ”centroid candidate”
2. For each candidate C, find the centroid of all points nearest to C
3. Make those the new centroid candidates, and repeat if necessary

…

Step 1

Step 2
Step 3

Running today in Haskell on an Amazon EC2 cluster [current work]

Summary so far

Highly concurrent
applications are a killer

app for Haskell

Summary so far

Highly concurrent
applications are a killer

app for Haskell

But wait… didn’t you say
that Haskell was a

functional language?

Value oriented programming
=> better concurrent programs

 Side effects are inconvenient
 do { v <- readTVar r; writeTVar r (v+1) }
vs
 r++

 Result: almost all the code is functional,
processing immutable data

 Great for avoiding bugs: no aliasing, no race
hazards, no cache ping-ponging.

 Great for efficiency: only TVar access are
tracked by STM

Road mapMulticore

Data parallelism
Operate simultaneously on bulk

data

Massive parallelism
Easy to program
Single flow of control
Implicit synchronisation

Slogan: no silver bullet: embrace diversity

Use Haskell!

Data parallelism

The key to using multicores at scale

Flat data parallel
Apply sequential

operation to bulk data

Nested data parallel
Apply parallel

operation to bulk data

Research projectVery widely used

Flat data parallel
 The brand leader: widely used, well understood, well

supported

 BUT: “something” is sequential
 Single point of concurrency
 Easy to implement:

use “chunking”
 Good cost model

(both granularity and
locality)

e.g. Fortran(s), *C
MPI, map/reduce

foreach i in 1..N {
...do something to A[i]...

}

1,000,000’s of (small) work items

P1 P2 P3

Face Recognition (NICTA, Sydney)

r = 1 r = 2 r = 3 r = 4A

€

dist(A,B)=
1
R r

A[]v
h −

r

B[]v
h r=1

R∑
1

Faces are compared by computing a distance
between their multi-region histograms.

Multi-region histogram for
candidate face as an array.

Face Recognition: Distance calculation

replicate

zipWith reduce reduce map

€

dist(A,B)=
1
R r

A[]v
h −

r

B[]v
h r=1

R∑
1

€

A[]v
h

€

B[][]v
h

€

A[][]v
h

€

A[][]v
h −

B[][]v
h

€

A[][]v
h −

B[][]v
h

1

€

r=1

R∑

€

1

R

Face Recognition: Distance calculation

€

B[][]v
h

distances :: Array DIM2 Float -> Array DIM3 Float
 -> Array DIM1 Float
distances histA histBs = dists
 where
 histAs = replicate (constant (All, All, f)) histA

 diffs = zipWith (-) histAs histBs
 l1norm = reduce (\a b -> abs a + abs b) (0) diffs
 regSum = reduce (+) (0) l1norm
 dists = map (/ r) regSum

 (h, r, f) = shape histBs

replicate

zipWi
th

reduce reduce map

€

dist(A,B)=
1

R r

A[]v
h −

r

B[]v
h r=1

R∑
1

€

A[]v
h

€

B[][]v
h

€

A[][]v
h

€

A[][]v
h −

B[][]v
h

€

A[][]v
h −

B[][]v
h

1

€

r=1

R∑

€

1
R

Repa: regular, shape-polymorphic parallel
arrays in Haskell

 http://justtesting.org/regular-shape-polymorphic-parallel-arrays-in

 Arrays as values: virtually no element-wise
programming (for loops).

 Think APL, but with much more polymorphism
 Performance is (often) comparable to C
 AND it

auto-parallelises

Warning: take all such figures with buckets of salt

GPUs
http://www.cse.unsw.edu.au/~chak/project/accelerate/

 GPUs are massively parallel processors, and
are rapidly de-specialising from graphics

 Idea: your program (when run) generates a
GPU program

distances :: Acc (Array DIM2 Float)
 -> Acc (Array DIM3 Float)
 -> Acc (Array DIM1 Float)
distances histA histBs = dists
 where
 histAs = replicate (constant (All, All, f)) histA
 diffs = zipWith (-) histAs histBs
 l1norm = reduce (\a b -> abs a + abs b) (0) diffs
 regSum = reduce (+) (0) l1norm
 dists = map (/ r) regSum

distances :: Acc (Array DIM2 Float)
 -> Acc (Array DIM3 Float)
 -> Acc (Array DIM1 Float)
distances histA histBs = dists
 where
 histAs = replicate (constant (All, All, f)) histA
 diffs = zipWith (-) histAs histBs
 l1norm = reduce (\a b -> abs a + abs b) (0) diffs
 regSum = reduce (+) (0) l1norm
 dists = map (/ r) regSum

GPUs
http://www.cse.unsw.edu.au/~chak/project/accelerate/

 An (Acc a) is a syntax tree for a program
computing a value of type a, ready to be
compiled for GPU

 The key trick: (+) :: Num a => a –> a -> a

GPUs
http://www.cse.unsw.edu.au/~chak/project/accelerate/

 An (Acc a) is a syntax tree for a program
computing a value of type a, ready to be compiled
for GPU

 CUDA.run
 takes the syntax tree
 compiles it to CUDA
 loads the CUDA into GPU
 marshals input arrays into GPU memory
 runs it
 marshals the result array back into Haskell memory

CUDA.run :: Acc (Array a b) -> Array a b

Main point
 The code for Repa (multicore) and Accelerate

(GPU) is virtually identical
 Only the types change

 Other research projects with similar approach
 Nicola (Harvard)
 Obsidian/Feldspar (Chalmers)
 Accelerator (Microsoft .NET)
 Recursive islands (MSR/Columbia)

Data parallelism

The key to using multicores at scale

Nested data parallel
Apply parallel

operation to bulk data

Research project

Nested data parallel
 Main idea: allow “something” to be parallel

 Now the parallelism
structure is recursive,
and un-balanced

 Much more expressive
 Much harder to implement

foreach i in 1..N {
...do something to A[i]...

}

Still 1,000,000’s of (small) work items

Amazing idea

 Invented by Guy Blelloch in the 1990s
 We are now working on embodying it in GHC:

Data Parallel Haskell
 Turns out to be jolly difficult in practice (but

if it was easy it wouldn’t be research). Watch
this space.

Compiler

Nested data
parallel
program

(the one we want
to write)

Flat data
parallel
program

(the one we want
to run)

Glorious Conclusion
 No single cost model suits all programs / computers.

It’s a complicated world. Get used to it.
 For concurrent programming, functional programming is

already a huge win
 For parallel programming at scale, we’re going to end up

with data parallel functional programming
 Haskell is super-great because it hosts multiple

paradigms. Many cool kids hacking in this space.
 But other functional programming languages are great

too: Erlang, Scala, F#

Antithesis

Then Now
Uniprocessors were getting faster
really, really quickly.

Uniprocessors are stalled

Our compilers were crappy naive, so
constant factors were bad

Compilers are pretty good

The parallel guys were a dedicated
band of super-talented programmers
who would burn any number of cycles
to make their supercomputer smoke.

They are regular Joe Developers

Parallel computers were really
expensive, so you needed 95%
utilisation

Everyone will has 8, 16, 32 cores,
whether they use them or not. Even
using 4 of them (with little effort) would
be a Jolly Good Thing

Parallel functional programming was tried in
the 80’s, and basically failed to deliver

Antithesis

Then Now
We had no story about
(a) locality,
(b) exploiting regularity, and
(c) granularity

Lots of progress
• Software transactional memory
• Distributed memory
• Data parallelism
• Generating code for GPUs

This talk

Parallel functional programming was tried in
the 80’s, and basically failed to deliver

	Slide 1
	Thesis
	Any effect
	Imperative
	Functional
	Functional programming to the rescue?
	Haskell
	Slide 11
	No Silver Bullet
	Road map
	N queens
	NQueens
	NQueens
	Semi-implicit parallelism
	Semi-implicit parallelism
	ThreadScope
	Cryptographic Protocol Shapes Analyzer (CPSA)
	Summary of semi-implicit
	Road map
	Expressing concurrency
	What you get in Haskell
	I/O in Haskell
	Mutable state
	Concurrency in Haskell
	Coordination in Haskell
	What’s wrong with locks?
	Locks are absurdly hard to get right
	Locks are absurdly hard to get right
	Locks are absurdly hard to get right
	Atomic memory transactions
	Atomic memory transactions
	Atomic blocks in Haskell
	STM in Haskell
	STM in Haskell
	Lots more… http://research.microsoft.com/~simonpj/papers/stm
	Example: Warp http://docs.yesodweb.com/blog/announcing-warp
	Example: Warp http://docs.yesodweb.com/blog/announcing-warp
	Example: Combinatorrent
	Distributed memory
	Erlang
	Cloud Haskell
	Cloud Haskell
	K-means clustering
	Slide 48
	Summary so far
	Summary so far
	Value oriented programming => better concurrent programs
	Road map
	Slide 53
	Flat data parallel
	Face Recognition (NICTA, Sydney)
	Face Recognition: Distance calculation
	Face Recognition: Distance calculation
	Slide 58
	GPUs http://www.cse.unsw.edu.au/~chak/project/accelerate/
	GPUs http://www.cse.unsw.edu.au/~chak/project/accelerate/
	GPUs http://www.cse.unsw.edu.au/~chak/project/accelerate/
	Main point
	Slide 63
	Nested data parallel
	Amazing idea
	Glorious Conclusion
	Antithesis
	Antithesis

