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Thesis
 The free lunch is over.  Muticores are here.  We have 

to program them.  This is hard.  Yada-yada-yada.
 Programming parallel computers

 Plan A.  Start with a language whose computational fabric 
is by-default sequential, and by heroic means make the 
program parallel

 Plan B.  Start with a language whose computational fabric 
is by-default parallel

 Every successful large-scale application of parallelism 
has been largely declarative and value-oriented

 SQL Server

 LINQ

 Map/Reduce

 Scientific computation

 Plan B will win.  Parallel programming will increasingly 
mean functional programming



Any 
effect

X := In1
X := X*X
X := X + In2*In2

C, C++, Java, C#, VB Excel, Haskell

 Do this, then do that
 “X” is the name of a cell 

that has different values 
at different times

 No notion of sequence
 “A2” is the name of a 

(single) value

Commands, control flow Expressions, data flow

Pure 
(no effects)

Spectrum



Imperative

X := In1
X := X*X
X := X + In2*In2

C, C++, Java, C#, VB 

 Do this, then do that
 “X” is the name of a cell 

that has different values 
at different times

Commands, control flow

Computational model: 
• program counter
• mutable state

Inherently sequential



Excel, Haskell

 No notion of sequence
 “A2” is the name of a 

(single) value

Expressions, data flow

A2 = A1*A1
B2 = B1*B1
A3 = A2+B2

*

*
+

A1

B1
B2

A2
A3

Functional

Computational model: 
expression evaluation

Inherently parallel



Functional programming to the 
rescue?

 “Just use a functional language and your troubles are 
over”

 Right idea:
 No side effects  Limited side effects
 Strong guarantees that sub-computations do not interfere

 But far too starry eyed.  No silver bullet: 
 Need to “think parallel”: if the algorithm has sequential data 

dependencies, no language will save you!
 Parallelism is complicated: different applications need 

different approaches.



Haskell
 The only programming language that takes purity 

really seriously
 21 years old this year... yet still in a ferment of 

development
 Particularly good for Domain Specific Embedded 

Languages (aka libraries that feel easy to use).
 Offers many different approaches to 

parallel/concurrent programming, each with a 
different cost model. 
 No up-front choice
 You can use several paradigms in one program



Multicore

Use Haskell!

Task parallelism
Explicit threads, 

synchronised via locks, 
messages, or STM

Data parallelism
Operate simultaneously on bulk 

data

Modest parallelism
Hard to program

Massive parallelism
Easy to program
Single flow of control
Implicit synchronisation

Semi-implicit 
parallelism
Evaluate pure 
functions in 

parallel

Modest parallelism
Implicit synchronisation
Easy to program

Slogan: no silver bullet: embrace diversity

This talk
Lots of different concurrent/parallel 
programming paradigms (cost models)

in Haskell



No Silver Bullet

Many different 
parallelism paradigms

One language

One program uses 
multiple paradigms



Road mapMulticore

Semi-implicit 
parallelism
Evaluate pure 
functions in 

parallel

Modest parallelism
Implicit synchronisation
Easy to program

Slogan: no silver bullet: embrace diversity

Use Haskell!



N queens

[1]

[1,1]

[2,1]

[3,1]

[4,1]

...

[1,3,1]

[2,3,1]

[3,3,1]

[4,3,1]

[5,3,1]

[6,3,1]

...

[]

[2]

...

Start 
here

Place n queens on an n x n board 
such that no queen attacks any 
other, horizontally, vertically, or 

diagonally 



NQueens

 Sequential code
nqueens :: Int -> [[Int]]
nqueens n = subtree n []

subtree :: Int -> [Int] -> [[Int]]
subtree 0 b = [b]
subtree c b = concat $
              map (subtree (c-1)) (children b)

children :: [Int] -> [[Int]]
children b = [ (q:b) | q <- [1..n],
                       safe q b ]

Place n queens on an n x n board 
such that no queen attacks any 
other, horizontally, vertically, or 

diagonally 



NQueens

 Parallel code

 Speedup: 3.5x on 6 cores

nqueens :: Int -> [[Int]]
nqueens n = subtree n []

subtree :: Int -> [Int] -> [[Int]]
subtree 0 b = [b]
subtree c b = concat $
              parMap (subtree (c-1)) (children b)

children :: [Int] -> [[Int]]
children b = [ (q:b) | q <- [1..n],
                       safe q b ]

Place n queens on an n x n board 
such that no queen attacks any 
other, horizontally, vertically, or 

diagonally 

Works on the 
sub-trees in 

parallel



Semi-implicit parallelism

Good things
 Parallel program guaranteed not to change the result
 Deterministic: same result every run
 Very low barrier to entry
 “Strategies” to separate algorithm from parallel structure
 Implementation free to map available parallelism to actual 

architecture

map       :: (a->b) -> [a] -> [b]
parMap :: (a->b) -> [a] -> [b]



Semi-implicit parallelism

Bad things
 Poor cost model; all too easy to fail to 

evaluate something and lose all parallelism
 Not much locality; shared memory
 Over-fine granularity can be a big issue

Profiling tools can help a lot



ThreadScope

 As usual, watch out for Amdahl’s law!



Cryptographic Protocol Shapes Analyzer (CPSA) 
http://hackage.haskell.org/package/cpsa

 Find authentication or secrecy failures in cryptographic 
protocols.  (Famous example: authentication failure in the Needham-
Schroeder public key protocol. )

 About 6,500 lines of Haskell
 “I think it would be moronic to code CPSA in C or Python.  The algorithm is 

very complicated, and the leap between the documented design and the 
Haskell code is about as small as one can get, because the design is 
functional.”

 One call to parMap

 Speedup of 3x on a quad-core --- worthwhile when many 
problems take 24 hrs to run.



Summary of semi-implicit

 Modest but worthwhile speedups (3-10) for 
very modest investment

 Limited to shared memory; 10’s not 1000’s of 
processors

 You still have to think about a parallel 
algorithm!  (Eg John Ramsdell had to 
refactor his CPSA algorithm a bit.)



Road mapMulticore
Parallel 

programming 
essential

Task parallelism
Explicit threads, 

synchronised via locks, 
messages, or STM



Expressing concurrency
 Lots of threads, all performing I/O

 GUIs
 Web servers (and other servers of course)
 BitTorrent clients

 Non-deterministic by design
 Needs

 Lightweight threads
 A mechanism for threads to coordinate/share
 Typically: pthreads/Java threads + locks/condition 

variables

http://hackage.haskell.org/package/cpsa


What you get in Haskell
 Very very lightweight threads 

 Explicitly spawned, can perform I/O
 Threads cost a few hundred bytes each
 You can have (literally) millions of them
 I/O blocking via epoll => OK to have hundreds of 

thousands of outstanding I/O requests
 Pre-emptively scheduled

 Threads share memory
 Coordination via Software Transactional 

Memory (STM)



I/O in Haskell

• Effects are explicit in the type system
– (reverse “yes”) :: String -- No effects
– (putStr “no”) :: IO ()    -- Can have effects

• The main program is an effect-ful 
computation
– main :: IO ()

main = do { putStr (reverse “yes”)
  ; putStr “no” }



Mutable state

Reads and 
writes are 100% 
explicit! 
 
You can’t say 
(r + 6), because 
r :: Ref Int

main = do { r <- newRef 0
; incR r
; s <- readRef r
; print s }

incR :: Ref Int -> IO ()
incR r = do { v <- readRef r

; writeRef r (v+1) 
  }

newRef :: a -> IO (Ref a)
readRef :: Ref a -> IO a
writeRef :: Ref a -> a -> IO ()



Concurrency in Haskell

webServer :: RequestPort -> IO ()
webServer p = do { conn <- acceptRequest p

           ; forkIO (serviceRequest conn)
                            ; webServer p }

serviceRequest :: Connection -> IO ()
serviceRequest c = do { … interact with client … }

 forkIO spawns a thread
 It takes an action as its argument

forkIO :: IO () -> IO ThreadId

No event-loop spaghetti!



Coordination in Haskell

main = do { r <- newRef 0
; forkIO (incR r)
; incR r
; ... }

incR :: Ref Int -> IO ()
incR r = do { v <- readRef r
                  ; writeRef r (v+1) }

 How do threads coordinate with each other?

Aargh!  
A race



What’s wrong with locks?

A 10-second review:
 Races: due to forgotten locks  
 Deadlock: locks acquired in “wrong” order. 
 Lost wakeups: forgotten notify to condition 

variable
 Diabolical error recovery: need to restore 

invariants and release locks in exception handlers

 These are serious problems.  But even worse...



Locks are absurdly hard to get right

Scalable double-ended queue: one lock per cell

No interference if 
ends “far enough” 

apart

But watch out when the queue 
is 0, 1, or 2 elements long!



Locks are absurdly hard to get right

Coding style
Difficulty of concurrent 

queue

Sequential code Undergraduate



Locks are absurdly hard to get right

Coding style
Difficulty of concurrent 

queue

Sequential code Undergraduate

Locks and 
condition 
variables

Publishable result at 
international conference



Atomic memory transactions

Coding style
Difficulty of concurrent 

queue

Sequential code Undergraduate

Locks and 
condition 
variables

Publishable result at 
international conference

Atomic blocks Undergraduate



Atomic memory transactions

atomically { ... sequential get code ... }

 To a first approximation, just write the sequential code, 
and wrap atomically around it

 All-or-nothing semantics: Atomic commit
 Atomic block executes in Isolation
 Cannot deadlock (there are no locks!)
 Atomicity makes error recovery easy 

(e.g. exception thrown inside the get code)

ACID



Atomic blocks in Haskell

 atomically is a function, not a syntactic 
construct

 A worry: what stops you doing incR outside 
atomically?

atomically :: IO a -> IO a

main = do { r <- newRef 0
; forkIO (atomically (incR r))
; atomically (incR r)
; ... }



STM in Haskell

 Better idea:
atomically :: STM a -> IO a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM 
()

incT :: TVar Int -> STM ()
incT r = do { v <- readTVar r; writeTVar r (v+1) } 
main = do { r <- atomically (newTVar 0)

; forkIO (atomically (incT r))
; atomic (incT r)
; ... }



STM in Haskell

 Can’t fiddle with TVars outside atomic 
block [good]

 Can’t do IO inside atomic block [sad, but 
also good]

 No changes to the compiler 
(whatsoever).  Only runtime system and 
primops.

atomic :: STM a -> IO a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()



Lots more…
http://research.microsoft.com/~simonpj/papers/stm

 STM composes beautifully
 MVars for efficiency in (very common) 

special cases
 Blocking (retry) and choice (orElse) in STM
 Exceptions in STM



Example: Warp
http://docs.yesodweb.com/blog/announcing-warp

 A very simple web server written in Haskell
 full HTTP 1.0 and 1.1 support, 
 handles chunked transfer encoding, 
 uses sendfile for optimized static file serving, 
 allows request bodies and response bodies to be processed in 

constant space

 Protection for all the basic attack vectors: overlarge 
request headers and slow-loris attacks 

 500 lines of Haskell (building on some amazing 
libraries: bytestring, blaze-builder, iteratee)



Example: Warp
http://docs.yesodweb.com/blog/announcing-warp

 A new thread for each user request
 Fast, fast

Pong requests/sec



Example: Combinatorrent 
http://jlouis.github.com/combinatorrent/

 Again, lots of threads: 400-600 is typical
 Significantly bigger program: 5000 lines of 

Haskell – but 
way smaller 
than the 
competition

 Built on STM
 Performance:

roughly
competitive

H
ask

el
l

(Not shown: Vuse 480k lines)

E
rl

ang

80,000
loc



Distributed memory
 So far everything is shared memory
 Distributed memory has a different cost model

 Think message passing…
 Think Erlang…



Erlang
 Processes share nothing; independent GC; 

independent failure
 Communicate over channels
 Message communication = serialise to 

bytestream, transmit, deserialise 
 Comprehensive failure model

 A process P can “link to” another Q
 If Q crashes, P gets a message
 Use this to build process monitoring apparatus
 Key to Erlang’s 5-9’s reliability



Cloud Haskell
 Provide Erlang as a library – no language 

extensions needed
newChan :: PM (SPort a, RPort a)
send       :: Serialisable a => SPort a -> a -> PM a
receive   :: Serialisable a => RPort a -> PM a
spawn :: NodeId -> PM a -> PM PId

Process

May contain many 
Haskell threads, 

which share via STM

Channels



Cloud Haskell
 Many static guarantees for cost model:

 (SPort a) is serialisable, but not (RPort a) 
=> you always know where to send your message

 (TVar a) not serialisable 
=> no danger of multi-site STM

http://jlouis.github.com/combinatorrent/


K-means clustering
The k-means clustering algorithm takes a set of data points 
and groups them into clusters by spatial proximity. 

Initial clusters have 
random centroids

After first iteration After third iterationAfter second iteration

Converged

●Start with Z lots of data points in N-dimensional space
●Randomly choose k points as ”centroid candidates”
●Repeat:

1. For each data point, find the nearerst ”centroid candidate”
2. For each candidate C, find the centroid of all points nearest to C
3. Make those the new centroid candidates, and repeat



Master

Mapper 1

Mapper 2

Mapper 3

Mapper n

Reducer 
1

Reducer 
k

MapReduce

Resultconver
ged?

●Start with Z lots of data points in N-dimensional space
●Randomly choose k points as ”centroid candidates”
●Repeat:

1. For each data point, find the nearerst ”centroid candidate”
2. For each candidate C, find the centroid of all points nearest to C
3. Make those the new centroid candidates, and repeat if necessary

…

Step 1

Step 2
Step 3

Running today in Haskell on an Amazon EC2 cluster [current work]



Summary so far

Highly concurrent 
applications are a killer 

app for Haskell



Summary so far

Highly concurrent 
applications are a killer 

app for Haskell

But wait… didn’t you say 
that Haskell was a 

functional language?



Value oriented programming 
=> better concurrent programs

 Side effects are inconvenient
      do { v <- readTVar r; writeTVar r (v+1) }
vs 
     r++

 Result: almost all the code is functional, 
processing immutable data

 Great for avoiding bugs: no aliasing, no race 
hazards, no cache ping-ponging.

 Great for efficiency: only TVar access are 
tracked by STM 



Road mapMulticore

Data parallelism
Operate simultaneously on bulk 

data

Massive parallelism
Easy to program
Single flow of control
Implicit synchronisation

Slogan: no silver bullet: embrace diversity

Use Haskell!



Data parallelism

The key to using multicores at scale

Flat data parallel
Apply sequential 

operation to bulk data

Nested data parallel
Apply parallel

operation to bulk data

Research projectVery widely used



Flat data parallel
 The brand leader: widely used, well understood, well 

supported

 BUT: “something” is sequential
 Single point of concurrency
 Easy to implement: 

use “chunking”
 Good cost model 

(both granularity and
locality)

e.g. Fortran(s), *C
MPI, map/reduce

foreach i in 1..N {
...do something to A[i]...

}

1,000,000’s of (small) work items

P1 P2 P3



Face Recognition (NICTA, Sydney)

r = 1 r = 2 r = 3 r = 4A

  

€ 

dist(A,B)=
1
R r

A[ ]v 
h −

r

B[ ]v 
h r=1

R∑
1

Faces are compared by computing a distance 
between their multi-region histograms.

Multi-region histogram for 
candidate face as an array.



Face Recognition: Distance calculation

replicate

zipWith reduce reduce map

  

€ 

dist(A,B)=
1
R r

A[ ]v 
h −

r

B[ ]v 
h r=1

R∑
1
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R∑

€  

1

R



Face Recognition: Distance calculation

  

€  

B[ ][ ]v 
h 

distances :: Array DIM2 Float -> Array DIM3 Float 
          -> Array DIM1 Float
distances histA histBs = dists
  where
    histAs = replicate (constant (All, All, f)) histA  

  
    diffs  = zipWith (-) histAs histBs
    l1norm = reduce (\a b -> abs a + abs b) (0) diffs 
    regSum = reduce (+) (0) l1norm
    dists  = map (/ r) regSum
    
    (h, r, f) = shape histBs

replicate

zipWi
th

reduce reduce map

  

€ 

dist(A,B)=
1

R r

A[]v 
h −

r

B[]v 
h r=1

R∑
1
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Repa: regular, shape-polymorphic parallel 
arrays in Haskell

 http://justtesting.org/regular-shape-polymorphic-parallel-arrays-in

 Arrays as values: virtually no element-wise 
programming (for loops). 

 Think APL, but with much more polymorphism
 Performance is (often) comparable to C
 AND it 

auto-parallelises 

Warning: take all such figures with buckets of salt



GPUs
http://www.cse.unsw.edu.au/~chak/project/accelerate/

 GPUs are massively parallel processors, and 
are rapidly de-specialising from graphics

 Idea: your program (when run) generates a 
GPU program

distances :: Acc (Array DIM2 Float) 
          -> Acc (Array DIM3 Float)
          -> Acc (Array DIM1 Float)
distances histA histBs = dists
  where
    histAs = replicate (constant (All, All, f)) histA    
    diffs  = zipWith (-) histAs histBs
    l1norm = reduce (\a b -> abs a + abs b) (0) diffs 
    regSum = reduce (+) (0) l1norm
    dists  = map (/ r) regSum



distances :: Acc (Array DIM2 Float) 
          -> Acc (Array DIM3 Float)
          -> Acc (Array DIM1 Float)
distances histA histBs = dists
  where
    histAs = replicate (constant (All, All, f)) histA    
    diffs  = zipWith (-) histAs histBs
    l1norm = reduce (\a b -> abs a + abs b) (0) diffs 
    regSum = reduce (+) (0) l1norm
    dists  = map (/ r) regSum

GPUs
http://www.cse.unsw.edu.au/~chak/project/accelerate/

 An (Acc a) is a syntax tree for a program 
computing a value of type a, ready to be 
compiled for GPU

 The key trick:  (+) :: Num a => a –> a -> a



GPUs
http://www.cse.unsw.edu.au/~chak/project/accelerate/

 An (Acc a) is a syntax tree for a program 
computing a value of type a, ready to be compiled 
for GPU

 CUDA.run
 takes the syntax tree
 compiles it to CUDA
 loads the CUDA into GPU
 marshals input arrays into GPU memory
 runs it
 marshals the result array back into Haskell memory

CUDA.run :: Acc (Array a b) -> Array a b



Main point
 The code for Repa (multicore) and Accelerate 

(GPU) is virtually identical
 Only the types change

 Other research projects with similar approach
 Nicola (Harvard)
 Obsidian/Feldspar (Chalmers)
 Accelerator (Microsoft .NET)
 Recursive islands (MSR/Columbia)



Data parallelism

The key to using multicores at scale

Nested data parallel
Apply parallel

operation to bulk data

Research project



Nested data parallel
 Main idea: allow “something” to be parallel

 Now the parallelism 
structure is recursive, 
and un-balanced

 Much more expressive
 Much harder to implement

foreach i in 1..N {
...do something to A[i]...

}

Still 1,000,000’s of (small) work items



Amazing idea

 Invented by Guy Blelloch in the 1990s
 We are now working on embodying it in GHC: 

Data Parallel Haskell
 Turns out to be jolly difficult in practice (but 

if it was easy it wouldn’t be research).  Watch 
this space.

Compiler

Nested data 
parallel 
program

(the one we want 
to write)

Flat data 
parallel 
program

(the one we want 
to run)



Glorious Conclusion
 No single cost model suits all programs / computers.  

It’s a complicated world.  Get used to it.
 For concurrent programming, functional programming is 

already a huge win
 For parallel programming at scale, we’re going to end up 

with data parallel functional programming
 Haskell is super-great because it hosts multiple 

paradigms.  Many cool kids hacking in this space.
 But other functional programming languages are great 

too: Erlang, Scala, F#



Antithesis

Then Now
Uniprocessors were getting faster 
really, really quickly.

Uniprocessors are stalled

Our compilers were crappy naive, so 
constant factors were bad

Compilers are pretty good

The parallel guys were a dedicated 
band of super-talented programmers 
who would burn any number of cycles 
to make their supercomputer smoke. 

They are regular Joe Developers

Parallel computers were really 
expensive, so you needed 95% 
utilisation

Everyone will has 8, 16, 32 cores, 
whether they use them or not.  Even 
using 4 of them (with little effort) would 
be a Jolly Good Thing

Parallel functional programming was tried in 
the 80’s, and basically failed to deliver



Antithesis

Then Now
We had no story about 
(a) locality, 
(b) exploiting regularity, and 
(c) granularity

Lots of progress
• Software transactional memory
• Distributed memory
• Data parallelism
• Generating code for GPUs

This talk

Parallel functional programming was tried in 
the 80’s, and basically failed to deliver
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