
Software Tools for Concurrent Programming

Peter Grogono

Department of Computer Science and Software Engineering

Concordia University

10 May 2012

Software Tools for Concurrent Programming 1/70

Introduction

The Erasmus Project

Goals:

a new programming language

associated infrastructure:

compiler
run-time system
development environment
libraries
. . .

Software Tools for Concurrent Programming The Erasmus Project 2/70

Why introduce a new language?

Cons:

there are too many languages already

why will a new language be an improvement over its predecessors?

There are only two kinds of programming language: those people
always complain about and those nobody uses — Bjarne Stroustrup

Pros:

we need a context/environment in which to explore new ideas and
validate hypotheses

programming languages grow: young and clean → old and ugly

a few languages become popular — at least for a while

Software Tools for Concurrent Programming The Erasmus Project 3/70

The Problem

We need to build applications that are:

complex

distributed

correct

efficient

understandable

adaptable

maintainable

. . .

Nothing new here

Software Tools for Concurrent Programming The Erasmus Project 4/70

The Problem

Why is it so hard to do this?

complexity

high coupling

implicit coupling

Object Oriented Programming — a nice idea, but:

powerful mechanisms can be overused (e.g., inheritance)
interfaces do not tell the whole story
objects + threads = disaster ?

Software Tools for Concurrent Programming The Erasmus Project 5/70

Hypothesis

Process are a better abstraction than objects

Why?

control flow is local

synchronization problems occur only at rendezvous

interfaces are complete

bonus: we can exploit multicore architecture

The Erasmus Project is an experiment
designed to confirm (or refute) this hypothesis.

Software Tools for Concurrent Programming The Erasmus Project 6/70

Objects

A

B

C

D

E

F

Software Tools for Concurrent Programming Processes versus Objects 7/70

Single-threaded objects

A

B

C

D

E

F

Software Tools for Concurrent Programming Processes versus Objects 8/70

Multi-threaded objects

A

B

C

D

E

F

Software Tools for Concurrent Programming Processes versus Objects 9/70

Joe Armstrong: creator of Erlang

Software Tools for Concurrent Programming Processes versus Objects 10/70

Armstrong on Objects

. . . the problem with object-oriented languages is they’ve got all
this implicit environment that they carry around with them. You
wanted a banana but what you got was a gorilla holding the
banana and the entire jungle.

Joe Armstrong, Coders At Work

Software Tools for Concurrent Programming Processes versus Objects 11/70

Processes

A

B

C

D

E

F

Software Tools for Concurrent Programming Processes versus Objects 12/70

Processes with flow of control

A

B

C

D

E

F

Software Tools for Concurrent Programming Processes versus Objects 13/70

Communicating processes

A

B

C

D

E

F

Software Tools for Concurrent Programming Processes versus Objects 14/70

Modularization using cells

A

B

C

D

E

F

U

V

Software Tools for Concurrent Programming Processes versus Objects 15/70

Processes

An old idea:

Dijkstra: Cooperating Sequential Processes (EWD 123, 1965)

Brinch Hansen: The Nucleus of a Multiprogramming System,
(CACM, 1970)

Concurrent Pascal, Solo, Edison, Joyce, . . .

Hoare: Communicating Sequential Processes (CACM, 1978)
occam, Ada, Erlang, JCSP, Go, . . .

Milner: Calculus of Communicating Systems (Springer, 1982)

Milner: The Polyadic π-Calculus, (Edinburgh, 1991)
occam-π, Pict, JoCaml, CubeVM, . . .

Software Tools for Concurrent Programming Processes versus Objects 16/70

Andrew Binstock, Editor, Dr. Dobbs Journal

Software Tools for Concurrent Programming Processes versus Objects 17/70

Processes

The real problem going forward is not program decomposition, but
composition. Why are we not currently designing programs as a series
of small asynchronous tasks? After all, we have already crossed into a
world in which we break programs into objects. Why not then into
tasks? Properly done, this would move today’s OOP more closely to its
original intent, which was to focus on the messages passed between
objects, rather than the objects themselves (according to the widely
quoted observation from Alan Kay, who coined the term “object
orientation”).

The problems facing such an approach rest on its profound
unfamiliarity. There are few languages that provide all the needs of this
model, few frameworks that facilitate its design, and few developers
conversant with the problems and limitations of this approach. . . . In
the meantime, it’s worth considering how an existing program broken
down into smaller tasks might function. What exactly would it look
like?

Andrew Binstock (Editorial, Dr Dobbs, 12/03/2012)

Software Tools for Concurrent Programming Processes versus Objects 18/70

Processes

The big idea is “messaging” — that is what the kernel of
Smalltalk/Squeak is all about (and it’s something that was never
quite completed in our Xerox PARC phase). The Japanese have
a small word — ma — for “that which is in between” — perhaps
the nearest English equivalent is “interstitial”.
The key in making great and growable systems is much more to
design how its modules communicate rather than what their
internal properties and behaviors should be.

Alan Kay, Squeak mailing list, 1998.

Software Tools for Concurrent Programming Processes versus Objects 19/70

Where are we now?

What we have:

Desi: a simple PL; probably a subset of Erasmus

UDC: a compiler that generates Desi Intermediate Language (DIL)

JIT: a just-in-time compiler that generates machine code

A very primitive IDE

Software Tools for Concurrent Programming Processes versus Objects 20/70

Where are we now?

What we need:

Libraries

Testing tools — difficult for concurrent programs

Debugger — but debuggers are not used much

Methods and tools for analyzing programs

Software Tools for Concurrent Programming Processes versus Objects 21/70

Language Features

Cells provide abstraction, organization, and encapsulation

Process perform independent tasks and pass messages to one another

Protocols describe the contents and ordering of messages

Routines perform small tasks without communication

Software Tools for Concurrent Programming A Quick Tour 22/70

A Differential Equation

A
d2x

dt2
+ B

dx

dt
+ Cx = 0

ẍ = −(B/A)ẋ − (C/A)x

Software Tools for Concurrent Programming A Quick Tour 23/70

A Differential Equation

A
d2x

dt2
+ B

dx

dt
+ Cx = 0

ẍ = −(B/A)ẋ − (C/A)x

Software Tools for Concurrent Programming A Quick Tour 23/70

Protocol

Nums = protocol { *val: Real }

Software Tools for Concurrent Programming A Quick Tour 24/70

Constant Multiplier

mulcon = process kin: +Nums; x: +Nums; kx: -Nums {
k: Real := kin.val;
loop {
kx.val := k * x.val
}
}

×

k

x kx

Software Tools for Concurrent Programming A Quick Tour 25/70

Adder

add = process x: +Nums; y: +Nums; sum: -Nums {
loop select {
|| t: Real := x.val; sum.val := y.val + t
|| t: Real := y.val; sum.val := x.val + t
}
}

+
x

y
x+ y

Software Tools for Concurrent Programming A Quick Tour 26/70

Multiplier

mul = process x: +Nums; y: +Nums; prod: -Nums {
loop select {
|| t: Real := x.val; prod.val := y.val * t
|| t: Real := y.val; prod.val := x.val * t
}
}

×
x

y
x× y

Software Tools for Concurrent Programming A Quick Tour 27/70

Integrator

DT = constant 0.001;

integrate = process x0: +Nums; xdot: +Nums; x: -Nums {
x: Real := x0.val;
loop {
x += xdot.val * DT;
x.val := x
}
}

∫
x0

ẋ x

Software Tools for Concurrent Programming A Quick Tour 28/70

Splitter

split = process x: +Nums; x1: -Nums; x2: -Nums {
loop {
x: Real := x.val;
select {
|| x1.val := x; x2.val := x
|| x2.val := x; x1.val := x
}
}
}

splitx
x1

x2

Software Tools for Concurrent Programming A Quick Tour 29/70

ẍ = −(B/A)ẋ − (C/A)x

∫ ∫
split split

× ×

+

ẋ ẋ x

ẋ x

ẍ
−B

A −C
A

ẋ0 x0

x

Software Tools for Concurrent Programming A Quick Tour 30/70

ẍ = −(B/A)ẋ − (C/A)x

∫ ∫
split split

× ×

+

∫ ∫
split split

× ×

+

ẋ ẋ x

ẋ x

ẍ
−B

A −C
A

ẋ0 x0

x

Software Tools for Concurrent Programming A Quick Tour 31/70

A cell for integration

∫
split

×

intmul

x0

x

kxk

ẋ

Software Tools for Concurrent Programming A Quick Tour 32/70

A cell for integration

intmul = cell
con1: +Nums; con2: +Nums; inp: +Nums;
out1: -Nums; out2: -Nums
{
c1, c2: Nums;
integrate(con1, inp, c1);
split(c1, c2, out1);
mulcon(con2, c2, out2);
}

Software Tools for Concurrent Programming A Quick Tour 33/70

ẍ = −(B/A)ẋ − (C/A)x

∫
ẍ dt

∫
ẋ dt

+

ẋ0 x0

ẋ
x

−B
A −C

A

Software Tools for Concurrent Programming A Quick Tour 34/70

Static Analysis

Static analysis derives properties of programs from their source code

E.g., type checking

Other static techniques:

process algebra
abstract interpretation

We need static analysis because testing is inadequate for large,
concurrent, distributed systems

Software Tools for Concurrent Programming Static Analysis 35/70

A chain of responsibility

P Q R

e1 e2

e3e4

p1

p4

q1

q4

q2

q3

r2

r3

Software Tools for Concurrent Programming Static Analysis 36/70

The requesting process

P Q R

e1 e2

e3e4

p1

p4

q1

q4

q2

q3

r2

r3

P = process -p1, +p4 {
loop {
(0) p1.snd;
(1) p4.rcv
}
}

P0
e1−→ P1

P1
e4−→ P0

Software Tools for Concurrent Programming Static Analysis 37/70

The last responding process

P Q R

e1 e2

e3e4

p1

p4

q1

q4

q2

q3

r2

r3

R = process +r2, -r3 {
loop {
(0) r2.rcv;
(1) r3.snd
}
}

R0
e2−→ R1

R1
e3−→ R0

Software Tools for Concurrent Programming Static Analysis 38/70

The intermediate responding process

P Q R

e1 e2

e3e4

p1

p4

q1

q4

q2

q3

r2

r3

Q = process +q1, -q2, +q3, -q4 {
loop select { (0)
|| q1.rcv;
if canAnswer
then (1) q4.snd
else (2) q2.snd

|| q3.rcv; (3) q4.snd
}
}

Q0
e1−→ Q1

Q0
e1−→ Q2

Q0
e3−→ Q3

Q1
e4−→ Q0

Q2
e2−→ Q0

Q3
e4−→ Q0

Software Tools for Concurrent Programming Static Analysis 39/70

Process transitions

P Q R

P0
e1−→ P1 Q0

e1−→ Q1 R0
e2−→ R1

P1
e4−→ P0 Q0

e1−→ Q2 R1
e3−→ R0

Q0
e3−→ Q3

Q1
e4−→ Q0

Q2
e2−→ Q0

Q3
e4−→ Q0

Software Tools for Concurrent Programming Static Analysis 40/70

System transitions

000

120

101

130

110

e1

e2

e3

e1

e4

Software Tools for Concurrent Programming Static Analysis 41/70

The requesting process

P Q R

e1 e2

e3e4

p1

p4

q1

q4

q2

q3

r2

r3

P = process -p1, +p4 {
loop select { (0)
|| p1.snd
|| p4.rcv
}
}

P0
e1−→ P0

P0
e4−→ P0

Software Tools for Concurrent Programming Static Analysis 42/70

Process transitions

P Q R

P0
e1−→ P0 Q0

e1−→ Q1 R0
e2−→ R1

P0
e4−→ P0 Q0

e1−→ Q2 R1
e3−→ R0

Q0
e3−→ Q3

Q1
e4−→ Q0

Q2
e2−→ Q0

Q3
e4−→ Q0

Software Tools for Concurrent Programming Static Analysis 43/70

System transitions

000

020

001

011

021

010

030

e1

e1

e2

e1

e1 e3

e4

Software Tools for Concurrent Programming Static Analysis 44/70

A chain of responsibility

P Q R

e1 e2

e3e4

p1

p4

q1

q4 q3

r2q2

r3

Software Tools for Concurrent Programming Static Analysis 45/70

The last responding process

P Q R

e1 e2

e3e4

p1

p4

q1

q4

q2

q3

r2

r3

R = process +r2, -r3 {
loop select { (0)
|| r2.rcv
|| r3.snd
}
}

R0
e2−→ R1

R1
e3−→ R0

Software Tools for Concurrent Programming Static Analysis 46/70

Process transitions

P Q R

P0
e1−→ P0 Q0

e1−→ Q1 R0
e2−→ R0

P0
e4−→ P0 Q0

e1−→ Q2 R0
e3−→ R0

Q0
e3−→ Q3

Q1
e4−→ Q0

Q2
e2−→ Q0

Q3
e4−→ Q0

Software Tools for Concurrent Programming Static Analysis 47/70

System transitions

000

010

030020

e1 e4

e3

e4

e1

e2

Software Tools for Concurrent Programming Static Analysis 48/70

A better pattern

Q

q1 q2

X = protocol { q: Text | r: Float }

Q = process +q1: X, -q2: X {
loop select {
|| q1.q; if canAnswer then q2.r else q2.q
|| q1.r; q2.r
}
}

Software Tools for Concurrent Programming Static Analysis 49/70

Model Checking

This approach is model checking — or close to it.

Well-understood method

Known to suffer from state-explosion problem

Various techniques to avoid state explosion are also known

Software Tools for Concurrent Programming Static Analysis 50/70

Model Checking

Ways of avoiding the state explosion

Abstraction reduces the state space

Erasmus cells allow modular analysis

Abstract Interpretation avoids state space search

Software Tools for Concurrent Programming Static Analysis 51/70

Abstract Interpretation

Idea: approximate semantics using monotonic functions over lattices

Accumulate properties by simulating execution

Pioneers: Patrick and Radhia Cousot

Examples: type checking, interval analysis, . . .

Software Tools for Concurrent Programming Static Analysis 52/70

Patrick Cousot

Software Tools for Concurrent Programming Static Analysis 53/70

Abstract Interpretation of CSP

Cousot applied his techniques to CSP:
Semantic Analysis of Communicating Sequential Processes
Patrick Cousot and Radhia Cousot
Automata, Languages and Programming
Seventh Colloquium, Noordwijkerhout, the Netherlands
14–18 July 1980, pages 119–133.

Difficult to read and understand

Limited results (e.g., only two processes)

Generally discouraging

Not much work has been done since 1980

Software Tools for Concurrent Programming Static Analysis 54/70

Cousot’s semantics for CSP

Software Tools for Concurrent Programming Static Analysis 55/70

Abstract Interpretation for Erasmus

Why should we try Abstraction Interpretation for Erasmus?

Erasmus is not the same as CSP

We do not aim for a full semantics

We need only an approximation of actual behaviour

“Fail safe”: if a program has a bad property, we must detect it.

Accept false positives: if we detect a bad property, the program may
not actually possess it.

Software Tools for Concurrent Programming Static Analysis 56/70

Abstract Interpretation for Erasmus

State: 〈P0,Q0,R0〉
State transitions (events omitted):

〈P0,Q0,R0〉 ⇒ 〈P0,Q1,R0〉
〈P0,Q0,R0〉 ⇒ 〈P0,Q2,R0〉

Set of states:

Σ = {〈P0,Q0,R0〉 , 〈P0,Q1,R0〉 , 〈P0,Q2,R0〉 , . . .}

Semantic function:

F (Σ) = Σ ∪
{

s ′ | s ∈ Σ and s ⇒ s ′
}

Software Tools for Concurrent Programming Static Analysis 57/70

Abstract Interpretation for Erasmus

F is monotonic. From the definition

F (Σ) = Σ ∪
{

s ′ | s ∈ Σ and s ⇒ s ′
}

and so F (Σ) ⊇ Σ.

Σ is bounded above by the set of all possible states.

Consequently, F has a fixed point.
(That is, an X such that F (X) = X .)

Software Tools for Concurrent Programming Static Analysis 58/70

Abstract Interpretation for Erasmus

To find the fixed point of F :

Start with Σ0 = {σ0}.
σ0 is an initial state (e.g., 〈P0,Q0,R0〉).

Compute Σ0, Σ1, Σ2, . . . , Σn, . . .
where Σn+1 = F (Σn)
until Σn+1 = Σn.

Then Σn is the fixed point.

Σn is the set of all reachable states.

Software Tools for Concurrent Programming Static Analysis 59/70

State set for the example

Case 1 (no concurrency):

Σ = {000, 001, 101, 110, 120, 130}

Case 2 (deadlock):

Σ = {000, 001, 010, 011, 020, 021, 030}

Case 3 (concurrency, no deadlock):

Σ = {000, 010, 020, 030}

Software Tools for Concurrent Programming Static Analysis 60/70

Detecting deadlock

Practical procedure for computing F :

S := { s0 }
while choose unmarked s from S:

mark s;
for each successor s’ of s:

insert s’ into S

Computation detects states with no successors

These are deadlocked states

Computation checks reachable states only

Processes with only one state can be ignored

Computation can be performed per cell

Software Tools for Concurrent Programming Static Analysis 61/70

Abstract Interpretation: Alternatives

We can check properties other than deadlock:
All we have to do is define a suitable abstract semantics.

We can use partial orders other than reachable states:
E.g., the lattice of failures in conventional CSP semantics.

Software Tools for Concurrent Programming Static Analysis 62/70

Communication without selection

P QCp1 q1

P = process p1: -K {
loop {
p1.snd
}
}

Q = process q1: +K {
loop {
q1.rcv
}
}

Software Tools for Concurrent Programming Communication Basics 63/70

Communication with selection by one process

P QCp1 q1

p2

p3

P = process p1: -K {
loop select {
|| p1.snd
|| p2.rcv
|| p3.rcv
}
}

Q = process q1: +K {
loop {
q1.rcv
}
}

Software Tools for Concurrent Programming Communication Basics 64/70

Communication with selection by two processes

P QCp1 q1

p2

p3

q2

q3

P = process p1: -K {
loop select {
|| p1.snd

|| p2.rcv

|| p3.rcv

}
}

Q = process q1: +K {
loop select {
|| q1.rcv

|| q2.rcv

|| q3.rcv

}
}

Software Tools for Concurrent Programming Communication Basics 65/70

One server, many clients on a channel

P Q

R

Cp1 q1

p2

p3

q2

q3

r1

Software Tools for Concurrent Programming Communication Basics 66/70

Multiple servers and clients on a channel

P Q

R

S

Cp1 q1

p2

p3

q2

q3

r1

s1

Software Tools for Concurrent Programming Communication Basics 67/70

Verifying Communication Algorithms

Describe the communication algorithm in pseudocode

Translate the pseudocode into a specification written in micro
Common Representation Language 2 (mCRL2)

Process the specification with the Linearizer and LTS Generator from
the mCRL2 toolkit

Verify that the Labelled Transition System (LTS) has the desired
properties

Software Tools for Concurrent Programming Communication Basics 68/70

Conclusion

If we can achieve these goals:

High-level analysis (abstract interpretation),
performed once for each program,
will deetect potential communication problems

Low-level analysis (verification of communication algorithms by
process algebra),
performed once only,
will prevent synchronization problems

Software Tools for Concurrent Programming Conclusion 69/70

The Erasmus Team

Brian Shearing and Peter Grogono, principal investigators

Nima Jafroodi, Ph.D., process algebras

Maryam Zakeryfar, Ph.D., abstract interpretation

Duo Peng, M.C.Sc., web applications

Shruti Rathee, M.C.Sc., not decided yet

Software Tools for Concurrent Programming The Erasmus Team 70/70

	The Erasmus Project
	Processes versus Objects
	A Quick Tour
	Static Analysis
	Communication Basics
	Conclusion
	The Erasmus Team

