
The Omniscient Debugger:
Debugging Backwards in

Time

“Because the Debugger Knows
Everything”

Bil Lewis

 Bil@LambdaCS.com

www.LambdaCS.com
Bil.Lewis@LambdaCS.com

Recording Events

Record “time stamps” for “interesting events” in the

program:
• State Changes:
• Local Variables
• Instance Variables
• Static Variables
• Array Elements

Method Calls:
• “Virtual” Methods
• Static Methods
• Constructors
• Super Methods

Interesting

Debugging is easier if you can go backwards:

It eliminates the worst problems with breakpoints:
• No “guessing” where to put breakpoints
• No “extra steps” to debugging:
• Set breakpoints, start, examine, continue...
• No “fatal” mistakes (no “Whoops, I went too far”)
• No non-deterministic problems

It gives the programmer a unique view of the program

All data is serializable:
• It can be saved to a file
• Customers can email a debugging session to developers
•

It’s Not A Bug...

The ODB divides bugs into two groups:

Snakes in the grass whose tails you can see

Snakes in the grass whose tails you can’t see

If a program outputs bad data, then we can see the tail.

With the ODB, we can always find the head. We don’t

even have to know the program!

If We Can’t See The Tail...

If a program fails to output expected data, then we can’t
see the tail. Now we have to know the program and
search for where the output should have happened.

This means we want to do a complex search over a
large set of events representing the execution of the
program...

If We Can’t See The Tail...

An effective method of doing this is to use an event
analysis engine... which is a familiar problem!

I use the prolog-style event search interface of M.
Ducasée:

port = call & arg0 = 0 & methodName = “sort”

With Breakpoint Debuggers

It’s not a snake, it’s more like a lizard...

The ODB

An implementation of the Omniscient Debugging Concept
in Java.

The ODB:
Instruments the class’ byte code
Runs in the same process
Uses a single lock

(all events in all threads are linearly ordered)

I know how to do the same for C, C++, Eiffel, etc. (It’s just

harder!)

Print Strings

I have chosen these formats:

<MyObj_123 Bob>
int[20]_2

MyObj
"Random string"
1234, 2.4
‘X’ (88)
true, false
-- (No value yet)

Value Display

The contents of objects will be displayed with their values
current to the selected time stamp:

<Person_2 Lovi>
 name "Lovi"
 age 23
 home <Address_3>
 friend <Person_3 Tarvi>

int[3]_2
 0 33
 1 66
 2 77

<Person_2 Lovi> (previous to creation)
 name --
 age --
 home --
 friend --

Method Traces

<Obj_1>.frob(<Obj_6> , 156, "frobbing") -> true
 <Obj_6>.twiddle() -> 5
 <Obj_6>.spin() -> void
 <Obj_6>.spin() -> void
 <Obj_6>.spin() -> void
 twiddle -> 5
frob -> true

Let’s Take a Tour...

Performance

Answer #1:
My objective is to show that Omniscient Debugging

 is an effective technique, irrespective of
 performance.

Answer #2:
There are bugs which are not amenable to this
 technique.

I have never seen one.

Answer #3

The ODB is a naive implementation which does NO
optimization.

I know how to make it much faster, but answer #2 still
applies.

Answer #3

In 31-bit address space I have recorded:

100 million events

1us/event

 (caveat, caveat, caveat...)

Answer #3

In a 64-bit address space, you should get:

2 Quadrapule-Mega-Gazillion events*

1us/event => 20,000 years ??!

If it takes 1,000 years for your bug to manifest itself,
would you be willing to wait 10,000 years for the debugger?

* 8E+17

Answer #3

The slowdown for an individual program varies:

for (int i=0; i<MAX; i++) sum+=smallArray[i]; 300x
for (int i=0; i<MAX; i++) x=x*x+x; 100x
for (int i=0; i<MAX; i++) sum+=bigArray[i]; 30x
for (int i=0; i<MAX; i++) s="Item"+i; 2x

Debugging ODB back-end 300x
Debugging ODB display 10x
Debugging Ant 7x

Performance

Reduction Techniques:

Start/Stop Collection:
Manually via “Start/Stop” button
Automatically via event matching

Garbage Collection

Don’t record all methods:
Skip “uninteresting” methods (e.g., java.lang)
Skip “recomputable” methods

An Optimized ODB should have a worst-case of ~10x.

Conclusion

Answer #2:

There are bugs which are not amenable to this

technique.

I have never seen one.

