
© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 1

Richard Jones
School of Computing

University of Kent
http://www.cs.kent.ac.uk/~rej

November 2010, London

Dynamic Memory
Management

Challenges for today and tomorrow

BCS Advanced Programming SG
November 2010

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 2

Overview

Part 1: Introduction, basic algorithms,
performance

Part 2:Parallel: allocation, tracing and
moving

Part 3:Concurrent: reference counting,
tracing and moving

Part 4:Real-time GC

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 3

PART 1: Introduction

• Why garbage collect?

• Basic algorithms

• Performance v. malloc/free

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 4

Why garbage collect?

Obvious requirements
• Finite, limited storage.
• Language requirement — objects may survive their creating

method.
• The problem — hard/impossible to determine when something

is garbage.

Programmers find it hard to get right.
• Too little collected? memory leaks.
• Too much collected? broken programs.

Good software engineering
• Explicit memory management conflicts with the software

engineering principles of abstraction and modularity.

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 5

Basic algorithms
—The garage metaphor—

Reference counting: Maintain a note on each object in your garage,
indicating the current number of references to the object. When an
object’s reference count goes to zero, throw the object out (it’s dead).

Mark-Sweep: Put a note on objects you need (roots). Then recursively
put a note on anything needed by a live object.
Afterwards, check all objects and throw out objects without notes.

Mark-Compact: Put notes on objects you need (as above). Move
anything with a note on it to the back of the garage.
Burn everything at the front of the garage (it’s all dead).

Copying: Move objects you need to a new garage. Then recursively
move anything needed by an object in the new garage.
Afterwards, burn down the old garage (any objects in it are dead)!

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 6

Generational GC

Weak generational hypothesis
•“Most objects die young” [Ungar, 1984]
•Common for 80-95% objects to die before a
further MB of allocation.

Strategy:
•Segregate objects by age into generations
(regions of the heap).

•Collect different generations at different
frequencies.

– so need to “remember” pointers that cross
generations.

•Concentrate on the nursery generation to reduce
pause times.

– full heap collection pauses 5-50x longer than
nursery collections.

roots
Old gen

Young gen

remset

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 7

Generational GC:
a summary

Highly successful for a range of applications


acceptable pause time for interactive applications.



reduces the overall cost of garbage collection.


improves paging and cache behaviour.

Requires a low survival rate, infrequent major collections, low overall cost
of write barrier

But generational GC is not a universal panacea.
It improves expected pause time but not the worst-case.


objects may not die sufficiently fast



applications may thrash the write barrier


too many old-young pointers may increase pause times



copying is expensive if survival rate is high.

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 8

Can GC perform as well as
malloc/free?

Test environment
• Real Java benchmarks + JikesRVM + real collectors + real malloc/frees.
• Object reachability traces: provide an ‘oracle’.
• Dynamic SimpleScalar simulator: count cycles, cache misses, etc.

Quantifying the Performance of Garbage Collection v. Explicit Memory Management
Hertz and Berger. OOPSLA’05.

Best GC v. Best malloc

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 9

PART 2: The multicore,
multiprocessor challenge

The modern environment:
• Multicore processors are ubiquitous
• Multiprocessors are common
• Heaps are large

Exploit parallel hardware
• Concurrent mutator threads (allocation)
• Parallel GC threads
• Concurrent mutator and GC threads

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 10

Parallelism

Avoid bottlenecks
• Heap contention — allocation.
• Tracing, especially contention for mark stack.
• Compaction — address fix-up must appear atomic.

Load balancing is critical
• Work starvation vs. excessive synchronisation

Over-partition work, work-share
• Marking, scanning card tables / remsets, sweeping, compacting

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 11

Terminology

mutator

collections

Parallel collection

Incremental collection

Single threaded collection

User program

and all
combinations…

Concurrent collection

On-the-fly concurrent collection

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 12

A. Concurrent allocation

Multiple user threads
• Must avoid contention for the heap
• Avoid locks, avoid atomic instructions (CAS)

freep

thread thread thread

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 13

Local Allocation Blocks

• Thread contends for a contiguous block (LAB) — CAS.
• Thread allocates within LAB (bump a pointer) — no contention.
• Locality properties make this effective even for GCs that rarely move

objects — needs variable-sized LABs.

thread

thread

thread
nextLAB

LAB LAB LAB LAB

LAB manager

ditto for freelist
schemes

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 14

Issues
• Load balancing (dynamic)

• Synchronisation

• Processor-centric or memory-centric
approach

Exploiting parallel hardware

Stephen Thomas, Insignia Solutions

B. Parallel marking

The goal is always to avoid contention (e.g. for
the mark stack) yet to balance loads.

Thread-local mark stacks.

Work-stealing.

Grey packets.

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 15

Work stealing

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 16

Heap

steal

unsynchronised

synchronised
t h r e a d s t a c k s

Fixed size
⇒

Overflow
mechanism

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 17

1. Acquire a full packet of marking work (grey references).
2. Mark & empty this packet and fill a fresh (empty) packet with new work.
3. Return full packets returned to the pool.

• Avoids most contention
• Simple termination.
• Simplifies prefetching (cf. a traditional mark stack).
• Reduces processor weak ordering problems

(fences only around packet acquisition/disposal).

Grey packets

thread

thread

Grey packet
pool

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 18

C. Parallel compaction

Without compaction
• Heaps tend to fragment over time.

Issues for compaction:
• Moving objects.
• Updating all references to a moved object…
• In parallel…
• (And concurrently…)

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 19

Compaction strategy

Old Lisp idea recently applied to parallel systems.
Divide the heap into a few, large regions:

• Marker constructs remsets
– locations with references into each region.

• Heuristic for condemned region (live volume/number/references) .
• Use remsets to fix-up references.

heap

remsets

e.g. Garbage-First Garbage Collection
Detlefs et al, ISMM04

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 20

Parallel compaction

Split heap into
• Many small blocks (e.g. 256b).
• Fewer, larger target areas (e.g. 16 x processors, each 4MB +).

Each thread
1. increments index of next target to compact (e.g. CAS).
2. claims a target area with a lower address (e.g. CAS).
3. moves objects/blocks in the next block en masse into target area.

An Efficient Parallel Heap Compaction Algorithm,
Abuaiadh et al, OOPSLA’04

target target target

block block block block

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 21

Results

Reduced compaction time (individual objects)
• from 1680 ms to 470 ms

for a large 3-tier application suffering fragmentation problems.

Moving blocks rather than individual objects
• further reduces compaction time by 25%
• at a small increase in space costs (+4%).

Compaction speed up is linear in number of threads.

Throughput increased slightly (2%).

Compressor

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 22

old

D. Parallel copying

NUMA architecture
• Each memory segment mapped to

a single processor
• Evacuate objects to preferred

processor

‘Dominant’ thread
1. Reached from a thread stack
2. Locked/reserved by a thread
3. Same as parent

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG
23

A processor-centric approach

NUMA-aware memory manager with dominant-thread-based copying GC.
Ogasawara OOPSLA’09

Thread
stack 2

T0
X

Thread
stack 1

Y

Thread
stack 0

Parallel copying

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 24

Memory-centric approaches

scan reaches
end of block

reset scan global pool

Performance boost: Add a 1-block cache between each thread and
the global pool.

Improving locality with parallel hierarchical copying GC.
Siegwart and Hirzel. ISMM 2006

Evaluation of parallel copying garbage collection on a shared-memory multiprocessor.
Imai and Tick. Transactions on Parallel and Distributed Systems, 1993

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 25

F: Reference counting

Problems
• Cycles
• Overheads
• Atomic RC operations

Benefits
• Distributed overheads
• Immediacy
• Recycling memory

Observations
• Practical solutions use Deferred

RC
– don’t count local variable ops
– periodically scan stack

• RC and tracing GC are duals
– GC traces live objects
– RC traces dead objects
– Unified Theory of Garbage

Collection, Bacon et al,
OOPSLA’04

Atomic Write

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 26

RC

RC RC− +

Atomic Read

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 27

RC

RC+

Atomic Read – oops!

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 28

RC

RC+

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 29

Concurrent RC

RC contention:
• Use a producer-consumer model
• Mutator threads add RC operations to local buffers.
• Collector thread consumes them to modify RC.

Prevent races between increments and
decrements:

• Buffers periodically turned over to collector
(epochs).

• Perform increments this epoch, decrements the
next, or

• Use Sliding Views…
threads

Epoch 1

Epoch 2

Epoch 3

Coalesced RC

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 30

RC RC RC RC−
+
−

+
−

+

RC

Only need
• A.rc--
• D.rc++

A B C D

Coalesced RC

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 31

RC RC RC RC

RC

−

+

L
O
G

Reconcile

An on-the-fly reference counting garbage collector for Java

Levanoni and Petrank, OOPSLA’01.

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 32

marked

C: Concurrent Tracing

Tracing concurrently with user threads introduces a coherency problem:
the mutator might hide pointers from the collector.

Deletion
Snapshot at the beginning
write barrier Record &

revisit

IU catch changes to connectivity.
SAB prevent loss of the original path.

Insertion
Incremental update
write barrier Record &

revisit

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 33

Write barrier properties

Tricolour invariants:
• Weak: live white objects are reachable from some grey object,

either directly or through a chain of white objects.
• Strong: no black-white pointers.

Mutator colour:
• Black: scans thread stacks just once
• Grey: revisit thread stacks

Colour of new objects
• Best allocated black?

Safe termination

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 34

Oops!

Insertion/incremental update barrier
Needs a final, stop the world, tracing phase.

Deletion/snapshot at the beginning barrier
No stop the world phase required.
But more floating garbage retained.

Black mutator
•Read barrier to preserve the
strong invariant (no black-
white).
•Deletion write barrier to
preserve the weak invariant
(reachable from gray).

Grey mutator
•Deletion write barrier to
preserve the strong
invariant.

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 35

Read barrier methods

Alternatively: don't let the mutator see objects that the
collector hasn’t seen.

How?
• Trap mutator accesses and mark or copy & redirect.
• Read barriers

– software
– memory protection.

Concurrent copying

Read barrier: the original Baker collector

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 36

• Read barriers are expensive
• Trap storm at the start of a collection

Replicating collection

Use a write barrier rather than a read barrier

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 37

3

Options
•Log the mutated objects and (later) reapply change to replica
•Use only the to-space replica
•Double-write to both original and replica

Brooks barrier
• Read from / write to replica only
• f.x = g.y ⇒ f.fwd.x = g.fwd.y

OVM barrier
• Double write (but often to the same object); read from either
• f.x = g.y ⇒ f.x = g.y; f.wd.x = g.y

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 38

fromspace tospace

fromspace tospace

Scheduling Hard Real-time Garbage Collection
Kalibera et al, RTSS’09

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 39

Memory Protection

By protecting a grey page, any access attempt by the
mutator is trapped.

Read
barrier

Mutator

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 40

Compressor revisited

On-the-fly
• Fully concurrent = no Stop-the-world phase

Phases
1. Mark live objects, constructing a mark-bit vector.
2. From mark-bit vector, construct offset table mapping

fromspace blocks to tospace blocks.
3. mprotect tospace pages (virtual not physical).

• need to map each physical page to 2 virtual pages.
4. Stop threads one at a time and update references to

tospace.
5. On access violations, move N pages and update references

in moved pages. Need only 1 empty physical page /
processor

6. Unprotect these pages and resume mutator. The Compressor: concurrent, incremental and parallel compaction, Kermany & Petrank, PLDI’06
cf. Mostly Concurrent Compaction for Mark-Sweep GC, Ossia et al, ISMM’04

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 41

Compressor results

Throughput: better than generational mark-sweep for SPECjbb2000 server
benchmark, worse for DaCapo client benchmarks
Pauses: delay before achieving full allocation rate.

0

10

20

30
40

50

60

70
80

90

100

-200 0 200 400 600 800 1000 1200 1400

Time From resuming the application(ms)

A
llo

ca
tio

ns
 K

b/
m

s

2WH
4WH
6WH
8WH

SPECjbb2000: 2-way 2.4GHz Pentium III Xeon

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 42

Azul Pauseless GC

mark
relocate

mark

remapMark (parallel and concurrent)
• Identifies pages to evacuate (sparse).
• Tagged pointers (Not-Marked-Through bit).

Relocate (parallel and concurrent)
• Protect from-space pages and concurrently relocate.
• Hardware TLB has GC-mode privilege level.
• Fast traps: no null check, no memory access, etc., etc.

Remap (parallel and concurrent)
• GC threads traverse object graph, tripping RB to update stale refs.

Results
• Uses proprietary hardware (Vega) and/or modified kernel.
• Substantially reduced transaction times; almost all pauses < 3ms.
• Reports other (incomparable) systems had 20+% pauses > 3ms.

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 43

PART 4: Real-time GC

Region schemes
• Cumbersome model, hard to program?
• Requires rewriting libraries.
• Better to infer regions (à la ML-kit)?

Real-time GC issues
• Incrementality
• Schedulability

– Guaranteed worst-case execution (pause) times.
– Pause time distribution.
– Time-based (slack or periodic) or work-based?

• Managing large data structures.
• Dealing with fragmentation.

Java for Real‐time

© Richard Jones, University of Kent
2010 http://www.cs.kent.ac.uk/~rej

Boeing ScanEagle UAV, navigation system
running on Purdue University’s OVM, an
open-source real-time Java virtual machine

US Navy DDG-1000 Zumwalt class
destroyer by Raytheon, programmed in

Real-time Java, running on IBM’s
WebSphere virtual machine

BCS Advanced Programming SG 44

Scheduling of RTGC

Work‐based
•

GC work quanta based on mutator allocation rate

•

Used by Baker

Slack
•

GC thread scheduled only in slack time

•

Used by SUN Real‐time System for hard real‐time threads

Periodic
•

GC thread scheduled only in statically allocated time slots,

 preempting mutator tasks

•

Time slots are allocated via a repeating pattern

•

Used by IBM Web‐Sphere Real‐time

© Richard Jones, University of Kent
2010 http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 45

(Time‐Based) Scheduling of
 RTGC

© Richard Jones, University of Kent
2010 http://www.cs.kent.ac.uk/~rej

No GC

Slack
scheduling

Periodic
scheduling

Mutator GC
GC Cycle Starts GC Cycle Ends

BCS Advanced Programming SG 46

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 47

Metronome

Allocation
• Segregated free-lists, with large number of size

classes
– low internal fragmentation
– external fragmentation removed by copying

Mostly non-copying collection
• Incremental mark
• Deletion barrier (snapshot at the beginning)

– avoids rescanning.
• Lazy sweep.

A Real-time GC with Low Overhead and Consistent Utilisation
Bacon et al, POPL’03

4 8

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 48

Metronome collection

Defragmentation
• If sufficient free pages

– Allow mutator to continue for another GC cycle without
running out of memory.

• Otherwise, copy objects:
– From a fragmented page to another page of same class.
– Break large arrays broken into a sequence of

power-of-2 sized arraylets.
– compiler optimisations for fast access.

– Brooks indirection pointer in object headers,

4

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 49

Metronome performance

Scheduling
• Time-based.
• Work-based gave inconsistent utilisation, leading

to infeasible scheduling.

Parameters
• Max live memory: 20-34MB live.
• Max allocation rate: 80-358MB/s max.

Results
• Min. mutator utilisation: 44.1%-44.6%.
• Pause time: 12.3-12.4ms max (10.7-11.4ms avg).
• Copied < 2% of traced data.

• JVM98 on 500MHz PowerPC.

2003

2010

Metronome performance

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 50

0 45 90 134 179 224 269 314 358 403 448 493 538 582 627 672 717 762 806 851 896 941 986
GC Slice Duration (in us; 50 us per bar) accumulated up to time 79.907 sec

1

2

5

10

20

50

100

200

500

Co
un

t (l
og

)

Duration of GC Slice

SPEC jbb2000

Design and Implementation of a Comprehensive Real-time Java Virtual Machine
Bacon et al, EMSOFT’07

Response Time

© Richard Jones, University of Kent
2010 http://www.cs.kent.ac.uk/~rej

Scheduling Hard Real-time Garbage Collection
Kalibera et al, RTSS’09

BCS Advanced Programming SG 51

Shameless plug!

The Garbage Collection Handbook:
The Art of Automatic Memory Management

Richard Jones, University of Kent
Tony Hosking, Purdue University

Eliot Moss, University of Massachusetts

Chapman & Hall, 2011

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 52

© Richard Jones, University of Kent 2010
http://www.cs.kent.ac.uk/~rej

BCS Advanced Programming SG 53

Questions?

