

Transactional memory & atomic blocks

Tim Harris

Research

September 2007. urlpagc=http://dx.doi.org/10.1109/ IISWC.2007.4362177, pdf=http://www-sal.cs.uiuc.edu/ ~zilles/papers/tm_false_conflicts.iiswc2007.pdf, catId1=SW, catId2=usingstm.

V 10

100

1.00

- [497] Craig Zilles and Ravi Rajwar. Transactional memory and the birthday paradox (brief announcement). In SPAA '07: Proc. 19th Symposium on Parallel Algorithms and Architectures, pages 303-304, June 2007. A longer version is available as Technical Report UIUCDCS-R-2007-2835, March 2007, urlpage=http://doi. acm.org/10.1145/1248377.1248428, pdf=http://www-sal. cs.uiuc.edu/~zilles/papers/tm-bday.spaa2007.pdf.
- [498] Ferad Zyulkyarov, Adrián Cristal, Sanja Cvijic, Eduard Ayguadé, Mateo Valero, Osman S. Unsal, and Tim Harris. WormBench: a configurable workload for evaluating transactional memory systems. In MEDEA '08: Proc. 9th workshop on MEmory performance, pages 61-68, October 2008. urlpage=http://dx.doi.org/10.1145/ 1509084.1509093.
- [499] Ferad Zyulkyarov, Vladimir Gajinov, Osman S. Unsal, Adrián Cristal, Eduard Ayguadé, Tim Harris, and Mateo Valero. Atomic Quake: using transactional memory in an interactive multiplayer game server. In PPoPP '09: Proc. 14th ACM SIGPLAN symposium on Principles and practice of parallel programming, pages 25– 34, February 2009. urlpage=http://dx.doi.org/10.1145/ 1504176.1504183, pdf=http://www.bscmsrc.eu/sites/ default/files/atomicquake-ppopp09-zyulkyarov.pdf.
- [500] Ferad Zyulkyarov, Tim Harris, Osman S. Unsal, Adrián Cristal, and Mateo Valero. Debugging programs that use atomic blocks and transactional memory. In PPoPP '10: Proc. 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, January 2010.

AMD quad-core

1.00

× 30 WD 100

Sun Niagara-2

100

2.0

× 90 WD

L2 Data Bank 0 L2B0 L2 Data Bank 1 L2B1	SPARC Core 1	SPARC Core 1	SPARC Core 5	SPARC Core 4	L2 Data Bank 4 L2B4 L2 Data Bank 5 L2B5
	L2 TAG0	L2 TAG1	L2 TAG5	L2 TAG4	MCU2
L2B3 L2 Data	BNG SII	co	X	OS EFU	L2B7 L2 Data
Bank 3 L2B2 L2 Data Bank 2	L2 TAG2	L2 TAG3	L2 TAG7	L2 TAG6	Bank 7 L2B6 L2 Data Bank 6
DMU	SPARC Core 2	SPARC Core 3	SPARC Core 7	SPARC Core 6	RDP TDS
PEU PSR #	L ESR)		SR	MAC	

Example: double-ended queue

Example: coarse-grained locking

100

Microsoft⁻

Research

Example: fine-grain locking

```
Class Q {
  Lock leftLock = new Lock();
  Lock rightRlock = new Lock();
  OElem leftSentinel:
  QElem rightSentinel;
  void pushLeft(int item) {
    QElem e = new QElem(item);
    leftLock.Acquire();
    e.right = this.leftSentinel.right;
    e.left = this.leftSentinel:
    this.leftSentinel.right.left = e;
    this.leftSentinel.right = e;
    leftLock.Release();
  }
}
```


Example: fine-grain locking

What we want

Hardware

Atomic blocks

Atomic blocks built over transactional memory 3 primitives: atomic, retry, orElse

Hardware

Microsoft^{*}

Acld

- To a first approximation, just write the sequential code, and wrap **atomic** around it
- All-or-nothing semantics: **Atomic** commit
- Atomic block executes in **Isolation**
- Cannot deadlock (there are no locks!)
- Atomicity makes error recovery easy (e.g. exception thrown inside the **PopLeft** code)

Atomic blocks compose (locks do not)

void GetTwo() {
 atomic {
 i1 = PopLeft();
 i2 = PopLeft();
 }
 DoSomething(i1, i2);
}

- Guarantees to get two consecutive items
- PopLeft() is unchanged
- Cannot be achieved with locks (except by breaking the PopLeft abstraction)

Composition is THE way we build big programs that work

Blocking: how does PopLeft wait for data?

```
Item PopLeft() {
    atomic {
        if (leftSentinel.right==rightSentinel) {
            retry;
        } else { ...remove item from queue... }
    }
}
```

- **retry** means "abandon execution of the atomic block and re-run it (when there is a chance it'll complete)"
- No lost wake-ups
- No consequential change to GetTwo(), even though GetTwo must wait for there to be two items in the queue

Research

Choice: waiting for either of two

- do {...this...} orelse {...that...} tries to run "this"
- If "this" retries, it runs "that" instead
- If both retry, the do-block retries. GetEither() will thereby wait for there to be an item in *either* queue

A X 90 100 Microsoft Research

Programming with atomic blocks

With locks, you think about:

- Which lock protects which data? What data can be mutated when by other threads? Which condition variables must be notified when?
- None of this is explicit in the source code

With atomic blocks you think about

- What are the **invariants** (e.g. the tree is balanced)?
- Each atomic block maintains the invariants
- Purely sequential reasoning within a block, which is dramatically easier
- Much easier setting for static analysis tools

Summary so far

- Atomic blocks (atomic, retry, orElse) are a real step forward
- It's like using a high-level language instead of assembly code: whole classes of low-level errors are eliminated.
- Not a silver bullet:
 - you can still write buggy programs;
 - concurrent programs are still harder to write than sequential ones;
 - just aimed at shared memory.
- But the improvement is very substantial

State of the art ~ 2003

100

Workload: operations on a red-black tree, 1 thread, 6:1:1 lookup:insert:delete mix with keys 0..65535

Implementation techniques

Microsoft^{*}

Research

- Direct-update STM
 - Allow transactions to make updates in place in the heap
 - Avoids reads needing to search the log to see earlier writes that the transaction has made
 - Makes successful commit operations faster at the cost of extra work on contention or when a transaction aborts
- Compiler integration
 - Decompose the transactional memory operations into primitives
 - Expose the primitives to compiler optimization (e.g. to hoist concurrency control operations out of a loop)
- Runtime system integration
 - Integration with the garbage collector or runtime system components to scale to atomic blocks containing 100M memory accesses
 - Memory management system used to detect conflicts between transactional and non-transactional accesses

A X 50 40 100 Microsoft Research

Results: concurrency control overhead

Direct update STM

- Transactional write:
 - Lock objects before they are written to (abort if another thread has that lock)
 - Log the overwritten data we need it to restore the heap case of retry, transaction abort, or a conflict with a concurrent thread
- Transactional read:
 - Log a version number we associate with the object
- Commit:
 - Check the version numbers of objects we've read
 - Increment the version numbers of object we've written

c2

ver = 200

val = 40

Thread T1	Thread T2	c1
int t = 0; → atomic {	→ atomic { t = c1.val;	ver = 100
t += c1.val;	t ++;	val = 10
t += c2.val; }	c1.val = t; }	

T1's log: T2's log:

Thread T1	Thread T2		
<pre>int t = 0; atomic { t += c1.val; t += c2.val; }</pre>	<pre> atomic { t = c1.val; t ++; c1.val = t; } }</pre>		
T1's log:	T2's log:		
c1.ver=100			
logs	T1 reads from c1: logs that it saw version 100		

Thread T1	Thread T2		
int t = 0; atomic { t += c1.val; → t += c2.val; }			
T1's log:	T2's log:		
c1.ver=100 c2.ver=200	c1.ver=100		
re	Suppose T1 now reads from c2, sees it at version 200		

Thread T1	Thread T2	c1	c2
int t = 0; atomic { t += c1.val; → t += c2.val; }	atomic {	locked:T2 val = 10	ver = 200 val = 40
T1's log:	T2's log:		
c1.ver=100 c2.ver=200	c1.ver=100 lock: c1, 100		
		Before updating c1, thread T2 must lock it: record old version number	

Thread T1	Thread T2	c1	c2	
int t = 0; atomic { t += c1.val; → t += c2.val; }	atomic {	locked:T2 val = 11	ver = 200 val = 40	
T1's log: c1.ver=100	T2's log: c1.ver=100	(2) After logg value, T2 makes place t	s its update in	
c2.ver=200	lock: c1, 100 c1.val=10			
	(1) Before updating c1.val,thread T2 must log the datait's going to overwrite			

Thread T1	Thread T2	c1	c2
int t = 0; atomic { t += c1.val; → t += c2.val; }	atomic {	ver=101 v: = 10	ver = 200 val = 40
T1's log:	T2's log:	successfully.	saction commits Unlock the object, ew version number
c1.ver=100 c2.ver=200	c1.ver=100 lock: c1, 100 c1.val=10	(1) Check the version locked matches the we previously re	version

 temp==0 is the only correct result here if these blocks really are atomic

- x == 0
- y == 0
- z == 0

Strong isolation

- Add a mechanism to detect conflicts between tx and normal accesses
 - e.g. 'z' in this example
- We would like:
 - Implementation flexibility e.g. different STMs
 - No overhead on non-transactional accesses
 - Predictable performance
 - Little overhead over weak atomicity

Strong isolation: implementation

100

LUD.

E

Microsoft⁻

Research

Conflicting normal access

100

LUD.

C. C.

Microsoft⁻

Research

Performance figures depend on...

LOD

V 20 WD

Microsoft^{*}

Research

- Workload : What do the atomic blocks do? How long is spent inside them?
- Baseline implementation: Mature existing compiler, or prototype?
- Intended semantics: Support static separation? Violation freedom (TDRF)?
- STM implementation: In-place updates, deferred updates, eager/lazy conflict detection, visible/invisible readers?
- STM-specific optimizations: e.g. to remove or downgrade redundant TM operations
- Integration: e.g. dynamically between the GC and the STM, or inlining of STM functions during compilation
- Implementation effort: low-level perf tweaks, tuning, etc.
- Hardware: e.g. performance of CAS and memory system

A X 30 WD 100 Microsoft Research

Labyrinth

- STAMP v0.9.10
- 256x256x3 grid
- Routing 256 paths
- Almost all execution inside atomic blocks
- Atomic blocks can attempt 100K+ updates
- C# version derived from original C
- Compiled using Bartok, whole program mode, C# -> x86 (~80% perf of original C with VS2008)
- Overhead results with Core2 Duo running Windows Vista

"STAMP: Stanford Transactional Applications for Multi-Processing" Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, Kunle Olukotun , IISWC 2008

100

Scaling – Labyrinth

Scaling – Delaunay

Scaling – Genome

Scaling – Vacation

Conclusion

- What are atomic blocks good for?
 - Shared memory data structures
- Implementations involve work throughout the software stack
 - Language design
 - Compiler
 - Language runtime system
 - OS-runtime-system interfaces
- Two different experiences
 - STM-Haksell
 - STM.Net