Transactional memory &
atomic blocks

Tim Harris

@ ran mirire amecas 1 e ee e rrspeeiEeResy ASTe Trecsavsseasse areaessesae s sasesesciey
September 2007. urlpage=http://dx.dol.org/10.11098/
[ISWC.2007.4362177, pdi=http://www~-sal . cs.uiuc, edu/
~zilles/papers/tm_false_conflicts.1iswc2007.pdf,
catld 1=SW, catld2=usingstm,

[497] Craig Zilles and Ravi Rajwar. Transactional memory and the
birthday paradox (brief announcement). In SPAA '07: Proc. 19th
Symposium on Parallel Algorithms and Architectures, pages 303~
304, June 2007. A longer version is available as Technical Report
UIUCDCS-R-2007-2835, March 2007, urlpage=http://dos
acm.org/10.1145/1248377.1248428, pdf=http://www-sal.

cs.uluc.edu/~zilles/papers/tm-bday.spaa2007. pdf.

[498] Ferad Zyulkyarov, Adrian Cristal, Sanja Cvijic, Eduard Ayguadé,
Mateo Valero, Osman S. Unsal, and Tim Harris. WormBench: a
configurable workload for evaluating transactional memory systems.
In MEDEA "08: Proc. 9th workshop on MEmory performance, pages
61-68, October 2008. urlpage=http://dx.doi.org/10,1145/

1509084, 1509093,

[499] Ferad Zyulkyarov, Vladimir Gajinov, Osman S. Unsal, Adriin
Cristal, Eduard Ayguadé¢, Tim Harris, and Mateo Valero. Atomic
Quake: using transactional memory in an interactive multiplayer
game server. In PPoPP '09: Proc. 14th ACM SIGPLAN symposium
on Principles and practice of parallel programming, pages 25~
34, February 2009. urlpage=http://dx.doi.org/10.1145/
1604176.1504183, pdi=http://www.bscmerc.eu/sites/

default/files/atomicquake-ppoppl9-zyulkyarov.pdf;

[S00] Ferad Zyulkyarov, Tim Harris, Osman S, Unsal, Adridn Cristal, and
Mateo Valero. Debugging programs that use atomic blocks and
transactional memory. In PPoPP '10: Proc. 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming,
January 2010.

AMD quad-core

Sun Niagara-2

S m———

L2 Data & 8 iAREANLE 3 }LGat&'
Bank 0 & BV LR RS ab L .| TBank 4l
L2B0 SPARC SPARC SPARC SPARC (=a283
L2 Data Core®" Core'¥ "Core 5 "Core 4 ffj]_zjngia;; ' |FES
. v aavnvallc

LIS = L2%
TAG4

L2

B TAG7 TAGS

'SPARG, 'SPARG/ SPARC SPARC
"Core 2 "Corg 3 -Core7 Corg6”~ RDP 'TDS

Example: double-ended queue

Left sentinel Right sentinel

N

L

2

)

X 10 <] [> 20 <] > |30

| > | X

Thread 1 Thread 2

Example: coarse-grained locking

Class Q {
Lock qLock = new Lock(Q);
QElem TeftSentinel;
QElem rightSentinel;

void pushLeft(int item) {
QElem e = new QElem(item);

Thread 1

Thread 2

gLock.Acquire(Q);
e.right = this.leftSentinel.right;
e.left = this.leftSentinel;
this.leftSentinel.right.left = e;
this.leftSentinel.right = e;

f=-

gLock.Release();

Iy

(o
N/
A4

Example: fine-grain locking

Class Q {
Lock TeftLock = new Lock();
Lock rightRlock = new Lock();
QElem leftSentinel;
QElem rightSentinel;

void pushLeft(int item) {
QElem e = new QElem(item);
TeftLock.Acquire(Q);
e.right = this.leftSentinel.right;
e.left = this.leftSentinel;
this.leftSentinel.right.left = e;
this.leftSentinel.right = e;
lTeftLock.Release();

Example: fine-grain locking

Left sentinel Right sentinel

X 20 X

- =Z

leftLock / rg htLock

W
ﬁ

Libraries build layered
concurrency

abstractions Library

Library
Library

Library

Library Library Library

Concurrency primitives

Hardware

Locks and condition

variables
(a) are hard to use and \\
<
(b) do not compose Q@
Ry
Ub"ary
Library

Hardware

\,'\‘o‘a(\l

Ubrary

Library

Library
Library

Library

Library Library Library

Atomic blocks built over transactional memory
3 primitives: atomic, retry, orElse

Hardware

Atomic memory transactions

item PopLeft() { E——
atomic { ... sequential code ... }

}

To a first approximation, just write the sequential code, and
wrap atomic around it

All-or-nothing semantics: Atomic commit
Atomic block executes in Isolation
Cannot deadlock (there are no locks!) Aclp

Atomicity makes error recovery easy
(e.g. exception thrown inside the PopLeft code)

Atomic blocks compose (locks do not)

void GetTwo() {
atomic {

11 = PopLeft();

12 = PopLeft();

}
DoSomething(i1, i2);

}

* Guarantees to get two consecutive items
« Popleft() is unchanged

« Cannot be achieved with locks (except by
breaking the PopLeft abstraction)

Composition

- Is THE way

we build big
programs
that work

Blocking: how does PoplLeft walt for data?

Item PopLeft() {
atomic {
if (leftSentinel.right==rightSentinel) {
retry;
} else { ...remove item from queue... }

} }

* retry means “abandon execution of the atomic block and
re-run it (when there is a chance it'll complete)”

* No lost wake-ups

* No consequential change to GetTwo(), even though
GetTwo must wait for there to be two items in the queue

Choice: waliting for either of two

void GetEither() { al Q2
atomic {
do {i=Q1.Get(); }
orelse { i = Q2.Get(); } \ /
R.Put(i); R
IS

 do {.this..} orelse {..that...} tries to run “this”
o |f “this” retries, it runs “that” instead

* If both retry, the do-block retries. GetEither() will thereby
wait for there to be an item in either queue

Programming with atomic blocks

With locks, you think about:

Which lock protects which data? What data can be mutated

when by other threads? Which condition variables must be
notified when?

None of this is explicit in the source code

With atomic blocks you think about

What are the invariants (e.g. the tree is balanced)?
Each atomic block maintains the invariants

Purely sequential reasoning within a block, which is
dramatically easier

Much easier setting for static analysis tools

Summary so far

Atomic blocks (atomic, retry, orklse) are a real step
forward

It's like using a high-level language instead of
assembly code: whole classes of low-level errors are
ellmlnated

Not a silver bullet:
— you can still write buggy programs;

— concurrent programs are still harder to write than
sequential ones;

— just aimed at shared memory.
But the improvement is very substantial

Normalised execution time

State of the art ~ 2003

Fine-grained
3 locking (2.57x)

~N

Coarse-grained
locking (1.13x)

2

Sequential
baseline (1.00x)

\

Traditional STM
(5.69x)

Workload: operations on
a red-black tree, 1
thread, 6:1:1
lookup:insert:delete mix
with keys 0..65535

Implementation techniques

* Direct-update STM
— Allow transactions to make updates in place in the heap

— Avoids reads needing to search the log to see earlier writes that the
transaction has made

— Makes successful commit operations faster at the cost of extra work on
contention or when a transaction aborts

« Compiler integration
— Decompose the transactional memory operations into primitives

— Expose the primitives to compiler optimization (e.g. to hoist concurrency
control operations out of a loop)

* Runtime system integration

— Integration with the garbage collector or runtime system components to
scale to atomic blocks containing 100M memory accesses

— Memory management system used to detect conflicts between
transactional and non-transactional accesses

Results:

concu

Fine-grained

rency control overhead

locking (2.57x)

N_

Coarse-grained
locking (1.13x)

2

Sequential
baseline (1.00x)

Traditional STM
(5.69x)

Direct-update

STM (2.04x)

Direct-update STM +
compiler integration
(1.46x)

Workload: operations on
a red-black tree, 1
thread, 6:1:1
lookup:insert:delete mix
with keys 0..65535

Direct update STM

 Transactional write:

— Lock objects before they are written to (abort if another thread
has that lock)

— Log the overwritten data — we need it to restore the heap case of
retry, transaction abort, or a conflict with a concurrent thread

 Transactional read:
— Log a version number we associate with the object

« Commit:
— Check the version numbers of objects we've read
— Increment the version numbers of object we've written

Example: contention between transactions

Thread T1

intt=0;
— atomic {

t +=c1.val;
t += c2.val;

}

T1’s log:

Thread T2

— atomic {

t=c1.val;

t ++;

cl.val =t;

}

T2’s log:

cl

ver = 100

c2

ver = 200

Example: contention between transactions

Thread T1 Thread T2 cl c2
A A
intt=0; — atomic { ver = 100 ver = 200
atomic { t=c1.val;
— t+=c1.val: t++: val =10 val =40
t +=c2.val; cl.val =t;
} }
T1’s log: T2's log:
c1.ver=100

T1 reads from c1:
logs that it saw
version 100

Example: contention between transactions

Thread T1 Thread T2 cl c2
A A
intt=0; atomic { ver = 100 ver = 200
atomic { — t=c1.val
— t +=c1.val; t++; val =10 val = 40
t += c2.val; cl.val =t;
} }
T1’s log: T2's log:
c1.ver=100 c1.ver=100

T2 also reads from
c1: logs that it saw
version 100

Example: contention between transactions

Thread T1 Thread T2 cl c2
A A

intt=0; atomic { ver = 100 ver = 200
atomic { — t=c1.val

t += c1.val; t++: val =10 val =40

— t +=c2.val; cl.val =t;

} }

T1’s log: T2's log:
c1.ver=100 c1.ver=100
c2.ver=200

Suppose T1 now
reads from c2, sees it
at version 200

Example: contention between transactions

Thread T1 Thread T2 cl c2
A A

intt=0; atomic { locked:T2 ver = 200
atomic { t =c1.val;

t +=c1.val; t++; val =10 val = 40

— t +=c2.val; — cl.val =t;

} }

T1’s log: T2's log:
c1.ver=100 c1.ver=100
c2.ver=200 lock: c1, 100

N

Before updating c1, thread
T2 must lock it: record old
version number

Example: contention between transactions

Thread T1 Thread T2 cl c2
A A
intt=0; atomic { locked:T2 ver = 200
atomic { t =c1.val;
t += c1.val; t++: val = 1 val =40

— t +=c2.val; — cl.val =t;
} }

(2) After logging the old
T1’s log: T2’s log: value, T2 makes its update in
place to c1
c1.ver=100 c1.ver=100
c2.ver=200 lock: ¢1, 100
c1.val=10
~N—

(1) Before updating c1.val,
thread T2 must log the data
it's going to overwrite

Example: contention between transactions

Thread T1

intt=0;
atomic {

t += c1.val;

— t+=c2.val;

}

T1’s log:

c1.ver=100
c2.ver=200

Thread T2 cl c2
A A
atomic { ver=101 ver = 200
t=c1.val;)
t++; Vj\’lo val =40
cl.val =t;

_>}

(2) T2's transaction commits
T2's log: successfully. Unlock the object,
installing the new version number

c1.ver=100

lock: c¢1, 100 _
c1.val=10 (1) Check the version we

locked matches the version
we previously read

Example: contention between transactions

Thread T1 Thread T2 cl c2
A ANy

intt=0; atomic { ver=101 ver = 200
atomic { t =c1.val;

t +=c1.val; t++; val =10 val = 40

t += c2.val; cl.val =t;

T1’s log: T2's log:

1.ver=100 :
gz.z::ﬂoo (1) T1 attempts to commit. Check the

versions it read are still up-to-date.

(2) Object c1 was updated from version
100 to 101, so T1’s transaction is
aborted and re-run.

Zombie transactions

Initially: x==y==z==0

atomic {
if (x I=y) z =1;

} e

temp = z;

« temp==0 is the only correct result here if these

blocks really are atomic

Zombie transactions

Direct update, lazy conflict detection

atomic i
atomic {

13 if (x '=y) z = 1; temp = z;

{
X
y 5
1 }

]

N < X
Il
Il

o O O

Zombie transactions

Direct update, lazy conflict detection

atomic

< X

e

° °
N < X

o O O

}

atomic { . ~

if (x l=y) z =1;

temp = z;

0

Zombie transactions

Direct update, lazy conflict detection

atomic

< X

e

° °
N < X

o R B

}

atomic { . ~

if (x '=y) z = 1;

temp = z;

0

Zombie transactions

Direct update, lazy conflict detection

atomic

< X

e

}

°
N < X

R o=

atomic {

if x I=y) z = 1

0

1

temp = z;

Zombie transactions

Direct update, lazy conflict detection

atom1c);{_ y atomic { :
_ . if (x '—Y)Z—l temp = z;
Y = 1, }
}
. 0 L 1 |

[
N < X
[l
[l
R o=

Strong Isolation

« Add a mechanism to detect conflicts between
tx and normal accesses

— e.g. 'Z' in this example

« We would like:

mplementation flexibility — e.g. different STMs
No overhead on non-transactional accesses
Predictable performance

_ittle overhead over weak atomicity

Strong isolation: implementation

Physical
address
space
Virtual Normal-heap
address
space
Memory
Normal accesses
memory from
accesses atomic
blocks

Writes from atomic blocks

Physical
address
space

Normal-hea
Virtual P

address
space

1. Atomic block attempts
to write to a field of an
object

Normal
memory
accesses

s . -
|

Writes from atomic blocks

physi 2- Revoke direct access
addre to the page holding the
spe direct view of the object ,

Normal-heap

Virtual
address
space
N mory
Normal a psses
memory om
accesses ¢ mic
cks

Writes from atomic blocks

Physical .
address 3. Use.unde.rIYlf\g STM
space write primitives
Virtual Normal-heap
address
space
X x
Normal a sses
memory m
accesses { mic
L cks

Physical
address
space

Virtual
address
space

Writes from atomic blocks

Normal-heap

Normal
memory
accesses

4A. Restore direct access
once the underlying
transaction has finished

TVICTTIOUTY

accesses
from
atomic
blocks

Conflicting normal access

Physical
address
space

vi 4B. Access violation (AV)
ad¢ delivered to a normal
s thread accessing that -

page: wait for TX
Memory
rmal accesses
r mory from
¢ esses atomic

blocks

Performance figures depend on...

Workload : What do the atomic blocks do? How long is spent inside
them?

Baseline implementation: Mature existing compiler, or prototype?

Intended semantics: Support static separation? Violation freedom
(TDRF)?

STM implementation: In-place updates, deferred updates, eager/lazy
conflict detection, visible/invisible readers?

STM-specific optimizations: e.g. to remove or downgrade redundant
TM operations

Integration: e.g. dynamically between the GC and the STM, or
inlining of STM functions during compilation

Implementation effort: low-level perf tweaks, tuning, etc.
Hardware: e.g. performance of CAS and memory system

Labyrinth

si

"STAMP: Stanford Transactional Applications for Multi-Processing”
Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, Kunle Olukotun , ISWC 2008

STAMP v0.9.10
256x256x3 grid
Routing 256 paths

Almost all execution inside atomic
blocks

Atomic blocks can attempt 100K+
updates

C# version derived from original C

Compiled using Bartok, whole
program mode, C# -> x86 (~80%
perf of original C with VS2008)

Overhead results with Core2 Duo
running Windows Vista

= =
N H

[N
o

1-thread, normalized to seq. baseline

Sequential overhead

STM implementation supporting static separation
11.86 In-place updates

Lazy conflict detection
Per-object STM metadata

Addition of read/write barriers before accesses
Read: log per-object metadata word
Update: CAS on per-object metadata word
Update: log value being overwritten

STM

= =
N H

[N
o

1-thread, normalized to seq. baseline

Sequential overhead

STM

Dynamic filtering to remove redundant logging

Log size grows with #locations accessed
Consequential reduction in validation time
1st [evel: per-thread hashtable (1024 entries)

2nd level: per-object bitmap of updated fields

Dynamic
filtering

= =
N H

[N
o

1-thread, normalized to seq. baseline

Sequential overhead

STM

Data-flow optimizations

Remove repeated log operations
Open-for-read/update on a per-object basis

Log-old-value on a per-field basis
Remove concurrency control on newly-allocated objects

Dynamic Dataflow
filtering opts

= =
N H

[N
o

1-thread, normalized to seq. baseline

Sequential overhead

STM

Inline optimized filter operations

mov eax <- ob]j addr

and eax <- eax, Oxffc

mov ebx <- [table base + eax]
cmp ebx, obj addr

Re-use table_base between filter operations
Avoids caller save/restore on filter hits

Dynamic
filtering

Dataflow Filter opts
opts

Scaling — Labyrinth

= \\/eak isolation

== Strong isolation

1.0 = wall-clock execution

time of sequential code

without concurrency control

HThreads

o o o
N B O

Execution time / seq. baseline

o
o

Scaling — Delaunay

- \\eak isolation
=== Strong isolation

2 3 4 5
HThreads

Scaling — Genome

- \\eak isolation —
=== Strong isolation

2 3 4 5 6 7 8

HThreads

O
o

Execution ti
o
D

o o
o N

Scaling — Vacation

- \\eak isolation
=== Strong isolation

2 3 4 5

HThreads

Conclusion

What are atomic blocks good for?
— Shared memory data structures

Implementations involve work throughout the
software stack

— Language design

— Compiler

— Language runtime system

— OS-runtime-system interfaces

Two different experiences

— STM-Haksell
— STM.Net

