
© 2009 IBM Corporation

Scripting in an Enterprise
Application Environment

Ian Mitchell, IBM Distinguished Engineer, CICS Transaction Server Architect.
Rob Nicholson, IBM Senior Technical Staff Member, MBCS, CEng, CITP.

© 2009 IBM Corporation

Agenda

Why Scripting?

Why PHP?

What is PHP?

Our PHP-on-Java implementation.

PHP in CICS

© 2009 IBM Corporation

Agenda

Why Scripting?

Why PHP?

What is PHP?

Our PHP-on-Java implementation.

PHP in CICS

© 2009 IBM Corporation

The Application Landscape
U

sa
ge

Number of Applications

ERP

CRM

SCM
Enterprise
applications

Traditional developers
building strategic
applications

Developers building simple
applications to solve simple
problems

IT created
applications User created applications

Sales analysis Dashboards

© 2009 IBM Corporation

Requirements:

Learn
–Simple, forgiving language
–Lots of examples, books
–Google -> cut -> paste programming.

Build version 1.
–Powerful libraries, frameworks, patterns, idioms.

Evolve and change.
–No compile or deploy step.

Quick to:

© 2009 IBM Corporation

Agenda

Why Scripting?

Why PHP?

What is PHP?

Our PHP-on-Java implementation.

PHP in CICS

© 2009 IBM Corporation

PHP, the language

–Imperative, Procedural and Object Oriented.
–Dynamic, weakly typed scripting language.
–Syntactically similar to C and Java.
–Server side web scripting and General Scripting.

• Can be embedded in HTML.

<html> <head><title>PHP Example</title></head>
<body>

<?php $myVar=$_GET["myparm"]; ?>
<p>Hello from HTML</p>
<?php echo "<p>myparm=$myVar</p>" ?>

</body>
</html>

<html> <head><title>PHP Example</title></head>
<body>

<?php $myVar=$_GET["myparm"]; ?>
<p>Hello from HTML</p>
<?php echo "<p>myparm=$myVar</p>" ?>

</body>
</html>

© 2009 IBM Corporation

PHP on the Public Internet

20M+ web domains use PHP (~ 1/3 of the internet)
3M+ Programmers know PHP
Significant web properties built on PHP

TIOBE Programming Community Index (Oct 2009)

© 2009 IBM Corporation

PHP Community by the numbers

Sites, & closed source
applications.

Frameworks,
Open Source Applications

(PHP)

VM,
language,

Extensions (C)

~ 150 programmers
(Source php.net svn)

1000s of programmers

3 to 5 Million
Programmers
(source Gartner, 2007 Zend, 2008,,)

Java Community is 7M programmers
(source Sun Nicrosystems 2008)

Ning

19 Frameworks
(source phpframeworks.com)

100s of Significant OS
applications

© 2009 IBM Corporation

PHP inside the firewall?

Gartner (Dec 2007)
• PHP Developers to grow from 3 to

5.5 million by 2013
• PHP Developers in Commercial or

Corporate IT to grow from 13% to
60% by 2013

• “Pay special attention to
opportunities to leverage PHP in
combination with Java development
efforts”

© 2009 IBM Corporation

Agenda

Why Scripting?

Why PHP?

What is PHP?

Our PHP-on-Java implementation.

PHP in CICS

© 2009 IBM Corporation

PHP Reference Implementation
A

pache
H

TTP server

Zend Engine

Virtual Machine
C

Extensions

Scripts

Modules Frameworks

Applications

PHP Language

C Language

Connectivity (> 10)

Data formatting

XML processing (14)

caching

cryptography

OO Database Clients

Procedural Database Clients

Filesystem
Operating system

Image processing

Many more…..

Applications(100s) Frameworks (19)

eZ components

Filesystem

Vast array of modules
implemented in PHP.

Rich set of extensions
implemented in C

Vast array of modules
implemented in PHP.

Rich set of extensions
implemented in C

© 2009 IBM Corporation

Another view of PHP

No specification

Incomplete documentation

Incomplete tests

No Unicode

Inconsistent implementation
–Inconsistent naming and parameter order.
–Bizare semantics in some corner cases.

Reference Implementation based language

© 2009 IBM Corporation

Is PHP a “proper” language?

© 2009 IBM Corporation

Procedural and OO
<?php

function ($bean, $message=“default”) {
$bean[“message”]=$message;
return $bean;

}
……..
$b=foo ($mybean);
$a=foo($mybean,”mymessage”);

?>

<?php
function ($bean, $message=“default”) {

$bean[“message”]=$message;
return $bean;

}
……..
$b=foo ($mybean);
$a=foo($mybean,”mymessage”);

?>

<?php
class myclass {

public $myProperty = ‘a default variable’;
public function displayProperty() {

echo $this->myProperty;
}

}
?>

<?php
class myclass {

public $myProperty = ‘a default variable’;
public function displayProperty() {

echo $this->myProperty;
}

}
?>

Defaults to pass by value.

(easier for novice programmer)

Reference counting and copy-on-
write allows efficiency.

Objects passed by reference in
PHP5.

© 2009 IBM Corporation

Stateless, shared nothing.
Each “request” stands alone.

•Think HTTP request.
–All program state rebuilt afresh on each request.
–State must be explicitly persisted.

•Session (file, database, memcached....)
•Database
•File
•Cached in the client(cookie, GET/POST parms.)

© 2009 IBM Corporation

Dynamic Structure.
Program structure is also rebuilt on each request.

Definition of functions, classes, constants can vary from
request to request.

// filename: include1.php
<?php

function foo ($a) {
return ($a*2);

}
?>

// filename: include1.php
<?php

function foo ($a) {
return ($a*2);

}
?>

// filename: include2.php
<?php

function foo ($a) {
return ($a*4);

}
?>

// filename: include2.php
<?php

function foo ($a) {
return ($a*4);

}
?>

// filename: index.php
<?php

if ($_GET[“myparm”] >2){
include “include1.php”;

} else {
include “include2.php”;

}
echo foo ($_GET[“myval”]);

?>

// filename: index.php
<?php

if ($_GET[“myparm”] >2){
include “include1.php”;

} else {
include “include2.php”;

}
echo foo ($_GET[“myval”]);

?>

Here the definition of the function foo
changes based on a request
parameter.

© 2009 IBM Corporation

PHP Request Processing.

Program stateProgram stateRequest functions
classes
constants
Global
variables

Objects

E
xecute includes

© 2009 IBM Corporation

Shared nothing architecture

© 2009 IBM Corporation

Threading model.

Programming model has no threads.
–No locks.

PHP Programmer does not have to worry about
–Thread safety.
–Lock contention.
–Deadlock.
–Etc.

Removes many sources of error and poor scalability.

© 2009 IBM Corporation

Simple XML Handling in PHP
PHP’s SimpleXML.

–3rd Generation XML extension.
–Represents XML document as PHP object tree.

Set the value of an element:
$xml = new SimpleXMLElement($xmlstr)
$xml->movie[0]->characters->character[0]->name = 'Miss Coder';

Set attribute “stars” on rating element using array syntax.
$xml = new SimpleXMLElement($xmlstr)
$xml->movie[0]->rating[‘stars’]=3;

SimpleXML also allows iteration.

PHP also has a DOM extension and XML stream parsers.

© 2009 IBM Corporation

A word about Unit test

©the mad LOLscientist

http://www.flickr.com/photos/themadlolscientist/
http://creativecommons.org/licenses/by-nc-sa/2.0/

© 2009 IBM Corporation

Security

Dynamic Language + unskilled programmers = security
exposures.

Early PHP implementations and applications were insecure.
–Buffer overruns, CSRF, XSS, remote exploits.

Language and implementation have evolved.

Mantra:
–Filter all input.

• PHP has excellent “whitelist” based filtering.
–Escape all output.

• To the database and the client.

Tainting has been proposed.

© 2009 IBM Corporation

PHP Characteristics.

Simple and Resilient

Poor absolute performance

Excellent scalability

© 2009 IBM Corporation

Agenda

Why Scripting?

Why PHP?

What is PHP?

Our PHP-on-Java implementation.

PHP in CICS

© 2009 IBM Corporation

PHP Reference Implementation
A

pache
H

TTP server

Zend Engine

Virtual Machine
C

Extensions

Scripts

Modules Frameworks

Applications

PHP Language

C Language

Connectivity (> 10)

Data formatting

XML processing (14)

caching

cryptography

OO Database Clients

Procedural Database Clients

Operating system

Image processing

Many more…..

Applications(100s) Frameworks (19)

eZ components

© 2009 IBM Corporation

PHP-on Java Implementation Concept

P8 Runtime

C
Extensions

Scripts

Modules Frameworks

Applications

PHP Language

Java Language

Connectivity (> 10)

Data formatting

XML processing (14)

caching

cryptography

OO Database Clients

Procedural Database Clients

Operating system

Image processing

Many more…..

Applications(100s) Frameworks (19)

eZ components

JavaVirtual Machine

Java
Extensions

Ja
va

-B
rid

geJAR
JAR

JAR
JAR

PHP Community and Assets.

+

Java Community and Assets.

in

Java Platform environments

© 2009 IBM Corporation

PHP in IBM Products.

P8 Runtime

JavaVirtual Machine

IBM CICS Transaction
Server

WebSphere Message
Broker 7.0

http://tr.im/ibmsmash
http://images.google.co.jp/imgres?imgurl=http://www.geekzone.co.nz/images/news/IBMSystemz10mainframe.jpg&imgrefurl=http://mattwhitbourne.blogspot.com/&usg=__UbNZJsFHSErpXrC3-nxRh80OmW8=&h=656&w=480&sz=52&hl=ja&start=22&um=1&tbnid=HMXPW69fOyFG4M:&tbnh=138&tbnw=101&prev=/images%3Fq%3DWebSphere%2BCICS%26ndsp%3D20%26hl%3Dja%26rlz%3D1T4IBMA_jaJP317JP317%26sa%3DN%26start%3D20%26um%3D1

© 2009 IBM Corporation

Java Virtual Machine

PHP in WebSphere sMash

• Runs PHP 5 scripts
• Requires Java 5 SE or later.

• Extensibility via XAPI
• XAPI-C for C extensions from php.net
• XAPI-J for Java extensions, native

libraries invoked over JNI and Project Zero
interface

• Extension language choice opaque to
PHP script

• Java Bridge
• Debug using via xdebug protocol using

Eclipse with PDT

P8 Runtime
Interpreter/Compiler

PHP runtime

Java
ExtensionsC

Extensions

D
ebug

XAPI-J
XAPI-C

PDT2

Ja
va

-B
rid

geJAR
JAR

JAR
JAR

Groovy
runtime

WebSphere sMash

HTTP server

Zero Programming Model

xdebug

© 2009 IBM Corporation

STOP!

© 2009 IBM Corporation

Script fileScript file

Lex and parse

ASTAST

OpCode Compile

OpCode ExecutableOpCode Executable

PHP Class
Conditional/non Conbditional

PHP Class
Conditional/non ConbditionalPHP Function

Conditional/non Conbditional

PHP Function
Conditional/non Conbditional

Program cache EntryProgram cache Entry

Absolute script path
is Key.
Synchronised on
Program cache
entry.

.class
One per method/function/global

.class
One per method/function/global

Replaces OpCode
Executable On Disk Cache entry

On jar per script file.
One class per method, function

plus global scope.
Keyed on config+path.

Loader recreates program
cache entry

On Disk Cache entry
On jar per script file.

One class per method, function
plus global scope.

Keyed on config+path.
Loader recreates program

cache entrySynchronised on program cache entry

instance
Static fields used to cache linkage at

runtime

instance
Static fields used to cache linkage at

runtime

Key=(path|config)

Instance cache.
(request to request)

Per runtime.

Instance cache.
(request to request)

Per runtime.

bytecode compile

Replicated in each runtime thread.

CachesCompilation

© 2009 IBM Corporation

Code Generation

1 + $x

(.php)

PUSH int(1)
LOCAL x
ADD

PHP Source Code

P8 Opcodes

AST

Less navigation
M

ore throughput

• AST descended recursively to
generate flat list of opcodes.

• Opcodes are unique to P8 and are
stack based which is key to later
translation to Java bytecode.

• Some simple optimisation are
done. Execution context is
evaluated and appropriate code
generated.

© 2009 IBM Corporation

Execution Context

=

b +

1 a

Astpw_assign_AssignStatement

RHS
ExecutionContext.READING

LHS
ExectionContext.

PREPARING_WRITE

Code generator has the execution context and generates
appropriate code.

PUSH int(1)

LOCAL a

ADD

ALOCALVAL b

© 2009 IBM Corporation

PHP evaluation order

$a[a1()][a2()];

$a[a1()][a2()];

$a[a1()][a2()];

$a[a1()][a2()];

$a[a1()][a2()];

$a[a1()][a2()]; Get $a

Call a1

Index into a by result of a1()

Call a2()

Index into a[a1()] by result of a2()

© 2009 IBM Corporation

Further Execution Order Examples

$a[a1()][a2()] = $b[$b1()][$b2()]
= $c[c1()][c2()];
–Order is a1(), a2(), b1(), b2(), c1(), c2(), c[][],
assign b[][], assign a[][]

$a[a1()][a2()] = $b[$b1()][$b2()]
+ $c[c1()][c2()];
–order is a1(), a2(), b1(), b2(), evaluate $b[][],
c1(), c2(), evaluate c[][], assign a[][]

–Could this be an unintentional
inconsistency? … bug? Tested on 5.2.1

© 2009 IBM Corporation

Agenda

Why Scripting?

Why PHP?

What is PHP?

Our PHP-on-Java implementation.

PHP in CICS

© 2009 IBM Corporation37

OLTP meets scripting... why?

CICS systems execute millions (billions?) of business critical
transactions per day

–The “ities” - Secure, reliable, available, …
–Assembler, COBOL primarily

Has evolved many invocation styles/technologies
–3270 “green screens”
–SNA, APPC
–MQ Series
–TCPIP
–HTTP
–SOAP

© 2009 IBM Corporation38

The Application Landscape
U

sa
ge

Number of Applications

ERP

CRM

SCM
Enterprise
applications

Traditional developers
building strategic
applications

Developers building simple
applications to solve simple
problems

IT created
applications User created applications

Sales analysis Dashboards

And the data they need is
ultimately held where?

© 2009 IBM Corporation39

The Application Landscape
U

sa
ge

Number of Applications

ERP

CRM

SCM
Enterprise
applications

Traditional developers
building strategic
applications

Developers building simple
applications to solve simple
problems

IT created
applications User created applications

Sales analysis Dashboards

And the data they need is
ultimately held where?

© 2009 IBM Corporation40

Data centre-hosting:
Providing the “ities”

The Application Landscape
U

sa
ge

Number of Applications

ERP

CRM

SCM
Enterprise
applications

Traditional developers
building strategic
applications

Developers building simple
applications to solve simple
problems

IT created
applications User created applications

Sales analysis Dashboards

And the data they need is
ultimately held where?

© 2009 IBM Corporation41

Web programming with PHP and CICS

Basic CICS/COBOL programming pattern is very similar to
PHP

– Request/Response
– No threading
– No implicit persistence
– CICS Pseudo-conversations == the first shopping

cart!

Many CICS apps fit a RESTful model eg Atom
– Find collections of data
– View a collection
– Pick an item
– Update it

© 2009 IBM Corporation42

What is REST ?
REST is the acronym for „Representational State Transfer“

It is the architectural model on which the World Wide Web is based

Principles of REST
Resource centric approach

All relevant resources are addressable via URIs

Uniform access via HTTP – GET, POST, PUT, DELETE

Content type negotiation allows retrieving alternative representations from same URI

REST style services
are easy to access from code running in web browsers, any other client or servers

can serve multiple representations of the same resource

More info: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

© 2009 IBM Corporation43

Java Virtual Machine

PHP in CICS Transaction Server

• Runs PHP 5 scripts
• Requires Java 5 SE or later. CICS v3.2

• Extensibility via XAPI
• XAPI-C for C extensions from php.net

Subset compiled for System z
• XAPI-J for Java extensions, native

libraries invoked over JNI and Project Zero
interface

• Extension language choice opaque to
PHP script

• Java Bridge. Access to CICS and DB2
• Debug using via xdebug protocol using

Eclipse with PDT

P8 Runtime
Interpreter/Compiler

PHP runtime

Java
ExtensionsC

Extensions

D
ebug

XAPI-J
XAPI-C

PDT2

Ja
va

-B
rid

geJAR
JAR

JAR
JAR

HTTP server

xdebug

© 2009 IBM Corporation44

JVMServers

JVM implementation in CICS continues to
evolve

– JDK 1.1.8
– HPJ and Hotpooling
– IBM Persistent Reusable JVM (Shiraz)
– Continuous mode
– Java 5
– Java 6

Now, JVMServers

© 2009 IBM Corporation45

Comparing capacity (projected)

Storage occupied by JVM(s) - MBytes

N
o.

 o
f c

on
cu

rre
nt

 ta
sk

s Threads in
a JVMServer

JVMs in
a pool

Graph assumes 18 Meg for Base JVM size, + 40 Meg of Engine, statics, classes etc, + 8M of app storage usage per thread.

(Null thread – no application state of its own, and not causing any addition classes to be loaded = 40Kb per thread)

© 2009 IBM Corporation46

JVMServers - why?

JVMs up to now
– Single task, serial reuse
– Large memory footprint
– Excellent isolation characteristics

JVMServers
– Multiple tasks (threads) in a JVM

concurrently
– Larger capacity
– Risk of collateral damage
– Not for customer application use in

v4.1

© 2009 IBM Corporation47

CICS
Task

Thread

JVM
LE enclave

JVM
thread

JVMPool Architecture - CICS TS v3 (and v2)

CICS TS v3
JVMLE enclave

CICS
Task

J8 OTE
Thread

JVM
thread

Single CICS task
dispatched into a
JVM in the pool at
a time. So
concurrent task
count limited to
the number of
JVMs that can fit
in the region.

Each JVM 'costs'
~20Mb plus the
application heap
value.

Result is about
20 task/JVMs
concurrently in
each region.

JVM

Heap &
Classes

LE enclave

CICS
Task

J8 OTE
Thread

JVM
JVM

thread

Heap &
Classes

Heap &
Classes

(master) JVM

Shared
Classes

© 2009 IBM Corporation48

JVMServer Architecture

CICS TS v4.1
JVMLE enclave

CICS
Task

T8 OTE
PThread

JVM
thread

New CICS TCB
“mode”.

Called “T8” -
dubbed as both a
CICS TCB and an
LE “pthread”.

JNI call to attach
a pthread to an
existing JVM.

Heap &
Classes

© 2009 IBM Corporation49

JVMServer Architecture

CICS TS v4.1
JVMLE enclave

CICS
Task PThread

JVM
thread

CICS
Task PThread

JVM
thread

CICS
Task PThread

JVM
thread

Can attach
multiple
pthread/T8/CICS
tasks to the JVM
at the same time.

Therefore serve
more requests
using a single
JVM.

JVMServer thread
“cost” is...

Very, very like a
WAS servant
region.

Result is
tasks per region.

Heap &
Classes

© 2009 IBM Corporation50

JVMServer Architecture

CICS TS v4.1
JVMLE enclave

CICS
Task PThread

JVM
thread

CICS
Task PThread

JVM
thread

Architected to
allow multiple
JVMServers in a
single CICS.

Different types of
work, or just a
degree of
isolation.

CICS
Task PThread

JVM
thread

JVMLE enclave

CICS
Task PThread

JVM
thread

PHP

AXIS2

© 2009 IBM Corporation51

3270

WebSphere MQ

Deploying PHP for agility

Web services

Application
Regions Databases

© 2009 IBM Corporation

In Conclusion

Simplicity wins.
Reliable simplicity wins reliably.

© 2009 IBM Corporation

© IBM Corporation 2009. All Rights Reserved.

The workshops, sessions and materials have been prepared by IBM or the session speakers and reflect their own views. They are provided for
informational purposes only, and are neither intended to, nor shall have the effect of being, legal or other guidance or advice to any participant. While
efforts were made to verify the completeness and accuracy of the information contained in this presentation, it is provided AS IS without warranty of any
kind, express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, this presentation or any other
materials. Nothing contained in this presentation is intended to, nor shall have the effect of, creating any warranties or representations from IBM or its
suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM software.

References in this presentation to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates.
Product release dates and/or capabilities referenced in this presentation may change at any time at IBM’s sole discretion based on market opportunities or
other factors, and are not intended to be a commitment to future product or feature availability in any way. Nothing contained in these materials is
intended to, nor shall have the effect of, stating or implying that any activities undertaken by you will result in any specific sales, revenue growth or other
results.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or
performance that any user will experience will vary depending upon many factors, including considerations such as the amount of multiprogramming in
the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an
individual user will achieve results similar to those stated here.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have achieved.
Actual environmental costs and performance characteristics may vary by customer.

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries:
ibm.com/legal/copytrade.shtmlAIX, CICS, CICSPlex, DataPower, DB2, DB2 Universal Database, i5/OS, IBM, the IBM logo, IMS/ESA, Power Systems, Lotus,
OMEGAMON, OS/390, Parallel Sysplex, pureXML, Rational, Redbooks, Sametime, SMART SOA, System z , Tivoli, WebSphere, and z/OS.

A current list of IBM trademarks is available on the Web at “Copyright and trademark information” at ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United
States, and/or other countries.
IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency which is now part of the Office of Government
Commerce
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.
ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and
Trademark Office
Intel and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

	Scripting in an Enterprise Application Environment�
	Agenda
	Agenda
	The Application Landscape
	Requirements:
	Agenda
	PHP, the language
	PHP on the Public Internet
	PHP Community by the numbers
	PHP inside the firewall?
	Agenda
	PHP Reference Implementation
	Another view of PHP
	Is PHP a “proper” language?
	Procedural and OO
	Stateless, shared nothing.
	Dynamic Structure.
	PHP Request Processing.
	Shared nothing architecture
	Threading model.
	Simple XML Handling in PHP
	A word about Unit test
	Security
	PHP Characteristics.
	Agenda
	PHP Reference Implementation
	PHP-on Java Implementation Concept
	PHP in IBM Products.
	PHP in WebSphere sMash
	Compilation
	Code Generation
	Execution Context
	PHP evaluation order
	Further Execution Order Examples
	Agenda
	OLTP meets scripting... why?
	Web programming with PHP and CICS
	What is REST ?
	JVMServers
	Comparing capacity (projected)
	JVMServers - why?
	JVMPool Architecture - CICS TS v3 (and v2)
	JVMServer Architecture
	JVMServer Architecture
	JVMServer Architecture
	Deploying PHP for agility
	In Conclusion

