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Topics
 What Is F# about?

» Some Simple F# Programming

+ A Taste of Parallel/Reactive with F#



What is F# about?

Or: Why is Microsoft investing in functional
programming anyway?



Simplicity




Economics




Programmer Prc




Simplicity




Code!

//F# //C#
open System using System;
let a = 2 _ .
console.writeLine a namespace ConsoleApplicationl
' {
class Program
{
static int a(Q)
{
return 2;
}

static void Main(string[] args)

{
}

console.writeLine(a);

}
}



Pleasure =¥

abstract class Command
type Command = Command of (Rover -> unit) {

}

abstract class MarsRoverCommand : Command
Command(fun rover -> rover.Accelerate(-1.0)) {

public virtual void Execute();

let BreakCommand S

protected MarsRover Rover { get; priv:
let TurnLeftCommand =

Command(fun rover -> rover.Rotate(-5.0<degs>)) public MarsRoverCommand(MarsRover rove

{
this.Rover = rover;
}
}
class BreakCommand : MarsRoverCommand
{
public BreakCommand(MarsRover rover)
base(rover)
{
}
public override void Execute()
{
Rover.Rotate(-5.0);
}
}
class TurnLeftCommand : MarsRoverCommand
{

public TurnLeftCommand(MarsRover rovel



Pleasure

type Expr =

True

And of Expr * Expr
Nand of Expr * Expr
Or of Expr * Expr
Xor of Expr * Expr
Not of Expr

http://stepheneasey.wordpress.com/tag/c/

Pain

public abstract class Expr { }
public abstract class UnaryOp :Expr

{

public Expr First { get; private set; }

public UnaryOp(Expr first)
{

}

this.First = first;

}

public abstract class BinExpr : Expr

{

public Expr First { get; private set; }
public Expr Second { get; private set; }

public BinExpr(Expr first, Expr second)

{
this.First = first;
this.Second = second;

}

public class TrueExpr : Expr { }

public class And : BinExpr
{

public And(Expr first., Expr second)

: base(fi



Pleasure =¥

let rotate (x,y,z) = (z,x,y) Tuple<V,T,U> Rotate(Tuple<T,U,V> t)
{

return new
Tuple<V,T,U>(t.Item3,t.Iteml,t.Item2);

}
let reduce f (x,y,z) = int Reduce(Func<T,int> f,Tuple<T,T,T> t)
fx+fy+ fz {

return f(t.Iteml) + f(t.Item2) + f
(t.Item3);



You
Can

Interoperate
With
Everything



Everything
Can
Interoperate
With

You



Economics




Fun!




F#: Influences
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Similar core Similar object
language model



F#. Combining Paradigms

I've been coding in F# lately, for a production task.

F# allows you to move smoothly in your programming style...
| start with pure functional code, shift slightly towards an
object-oriented style, and in production code, | sometimes
have to do some imperative programming.

| can start with a pure idea, and still finish my project with
realistic code. You're never disappointed in any phase of the
project!

Julien Laugel, Chief Software Architect, www.eurostocks.com



F#: The Combination Counts!

Libraries
Scalable Explorative
Interoperable

Statically
Typed




F# In More Deta




Objects

Functional

Data

Functional
Core



Quick Tour

Comments

// comment

(* comment *)

/// XML doc comment
let x =




Quick Tour

Overloaded Arithmetic

Addition
Subtraction
Multiplication
Division
Remainder/modulus
Unary negation

Booleans

not expr Boolean negation
expr & & expr Boolean “and”
expr || expr Boolean “or”




Orthogonal & Unified Constructs

Type inference. The safety
of C# with the
succinctness of a scripting
language

» Let “let” simplify your life...

Bind a static value
let data = (1,2, 3)

Bind a static function let £(a,b,c)

let sum a + b + c

let g(x) = sum + x*x
g(a), g(b), g(c)

Bind a local value

Bind a local function



Demo: Let’'s We




Orthogonal & Unified Constructs

* Functions: like delegates + unified and simple

One simple
: VMGl
(fun x -> x + 1 mechanism, W predicate = 'a -> bool
many

uses send = 'a -> unit
Declare a

funCtlorthreadStart = unit -> unit

A pair

A function type |

a -> bool

equality =



F# - Functional

let £ x = x+1

let pair x = (x,x)

let fst (x,y) = x

let data = (Some [1l;2;3], Some [4;5;6])

match data with

Some (numsl), Some (nums2) -> numsl @ nums2
None, Some (nums) -> nums

Some (nums) , None -> nums

None, None -> failwith "missing!"




F# - Functional

List.map Seq. fold

Range
Array.filter Lazy Expressions  Set.union

Map LazyList Events Async. ..
List via query

[ 0..1000 ]

[ for x in 0..10 -> (x, x * x) ]

[| for x in 0..10 -> (x, x * x) |]

seq { for x in 0..10 -> (x, x * x) }
IEnumerable
via query

Array via query



Immutability the norm...

// Part 1. Adjust some constants

let PI = 3.141592654 R
Data is immutable

PI <- 4.8 type Person = by default

: : { Name : string;
4 This value is not Birth: DateTime }

Error List

let bob =
{ Name = "bob";
Birth = DateTime(15,8,1980) }

[/ OK
let bobJunior =
{ bob with Birth = DateTime(23,5,2006) }

// Not 0Kl
Values may bob.Birth <- DateTime(23,5,2006)
not be
changed { Copy & Update

Error List
& 1 Error ||| 1\ 0 Warning

Description File

@ 1  error FS0005: This field is not mutable test.fs




In Praise of Immutability

* Immutable objects can be relied upon

Immutable objects can transfer between
threads

Immutable objects can be aliased safely

Immutable objects lead to (different)
optimization opportunities



F# - L I StS Generated

Lists

open System.IO
let rec allFiles(dir) =
[ for file in Directory.GetFiles (dir) do
yield file
for sub in Directory.GetDirectories (dir) do
yield! allFiles(sub) ]

allFiles(Q"C:\Demo")



F# - Sequences On-demand

sequences

open System.IO
let rec allFiles(dir) =
seq
{ for file in Directory.GetFiles (dir) do
yield file
for sub in Directory.GetDirectories(dir) do
yield! allFiles(sub) }
Pipelines
allFiles (Q@"C:\WINDOWS")
|> Seq.take 100
| > show



Weakly Typed? Slow?

//F#

#light

open System
let a = 2

Console.WritelLine(a)

°

//CH#
using System;

namespace ConsoleApplicationl

{

class Program

{

static int a()

{

return 2;

tic void Main(string]]

Console.WritelLine(a);




-

Typed

Yet rich,
dynamic

Efficient

Yet succinct




Objects

Class Types

type ObjectType(args) =

let internalvalue = expr
let internalFunction args
Tet mutable internalState

member x.Propl = expr
member x.Meth2 args = expr

Constructing Objects

new FileInfo(@"c:\misc\test.fs")




F# - Objects + Functional

type Vector2D (dx:double,dy:double) =

Inputs to

- object
member VDI construction
member v.DY = dy Exported
properties

member v.Length = sqrt (dx*dx+dy*dy)

member v.Scale (k) = Vector2D (dx*k,dy*k)

Exported
method



F# - Objects + Functional

type Vector2D (dx:double,dy:double) =

Internal (pre-
let norm2 = dx*dx+dy*dy computed) values

and functions
member v.DX = dx
member v.DY = dy

member v.Length = sqrt (norm2)

member v.Norm2 = norm?2



F# - Objects + Functional

Immutable
Inputs

type HuffmanEncoding (freq:seqg<char*int>) =

< 50 lines of beautiful functional code!

Internal
tables
member x.Encode (input: seqg<char>) =
encode (input) Publish
access

member x.Decode (input: seqg<char>) =
decode (input)



F# - Objects + Functional

type Vector2D (dx:double,dy:double) =

Internal state
let mutable currDX = dx

let mutable currDX = dy

Publish
Internal state

member v.DX = currDX

member v.DY = currDY

Mutate internal
Sstate

member v.Move(x,y) =
currDX <- currDX+x
currDY <- currDY+y



F# and adCenter

4 week project, 4 machine learning experts

100million probabilistic variables
Processes 6TB of training data

Real time processing



AdPredict: What We Q| s powertul type

Quick Coding
Agile Coding
Scripting
Performance
Memory-Faithful
Succinct
Symbolic

.NET Integration

typing, more thinking

Type-inferred code is
easily refactored

“Hands-on” exploration.

Immediate scaling to
massive data sets

mega-data structures,
16GB machines

Live in the domain,
not the language

Schema compilation

_ ~nd fCahedules”
Especially Excel, SQL

Server



Smooth Transitions

* Researcher’s Brain - Realistic, Efficient Code
» Realistic, Efficient Code > Component

« Component - Deployment



UNITS OF MEASUE




1985

SDI experiment:
The plan



http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png



http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png



http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png
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let Earthmass = 5.9736e24<kg>

// Average between pole and equator radii
let EarthRadius = 6371.0e3<m>

// Gravitational acceleration on surface of Earth
let g = PhysicalConstants.G * EarthMmass / (EarthRadius * EarthRadius)

let EarthMass = 5.9736e24<Ma:
let EarthRadius 6371.0e3<M

let g = Math.PhysicalConstan
et va[’g : float<m/s *’y
III\\\




F# Async/Paral




A Building Block for
Async/Parallel/Reactive
Design Patterns

* For users:
You can run it, but it may take a while

Or, your builder says...

OK, I can do the job, but | might have to talk to someone else
about it. I'll get back to you when I'm done



DEMO




The F# ApprOaCh In parallel programming,

F# is a power tool

» Good Architecture for good architects and
- Know your techniques good developers
* Know your reguirements
« Know your limits (CPU, disk, network, latency)

* Translate Good Architecture into Good Code
with F#
+ A great platform
* A massive increase in isolation and immutability
« A massive reduction in mutation



Asynchronous "non-
blocking" action

do! writeAsync image2 "dog.jpg"
do printfn "done!"
return image2f}

Continuation/
Event callback

You're actually writing this (approximately):

async.Delay(fun () ->
async.Bind(ReadAsync "cat.jpg", (fun image ->
let image2 = f image
async.Bind(writeAsync "dog.jpg",(fun () ->

printfn "done!"
async.Return())))))




async{ ... }

* Built on a much more general mechanism called
“‘computation expressions”

seq{...} (queries/sequences)
eventStream { ... } (queries over event streams)
parser{... } (parser combinators)

resumable { ... } (resumptions)



DEMO




8 Ways to Learn

« FSl.exe  http://cs.hubfs.net

 Codeplex Fsharp

« Samples Included Samples

« Go to definition

Books

 Lutz’ Reflector - ML


http://cs.hubfs.net/

Books about F#

Visit www.fsharp.net



http://fsharp.net/

Getting F#

» September 2008: CTP released

F# will be a supported language In
Visual Studio 2010

* Next stop: Visual Studio 2010 Beta 1

ook for it soon!



Questions & Dis




