1

Succinct, Expressive, Functional

The F# Team
Microsoft Developer Division
Microsoft Research

Topics
 What Is F# about?

» Some Simple F# Programming

+ A Taste of Parallel/Reactive with F#

What is F# about?

Or: Why is Microsoft investing in functional
programming anyway?

Simplicity

Economics

Programmer Prc

Simplicity

Code!

//F# //C#
open System using System;
let a = 2 _ .
console.writeLine a namespace ConsoleApplicationl
' {
class Program
{
static int a(Q)
{
return 2;
}

static void Main(string[] args)

{
}

console.writeLine(a);

}
}

Pleasure =¥

abstract class Command
type Command = Command of (Rover -> unit) {

}

abstract class MarsRoverCommand : Command
Command(fun rover -> rover.Accelerate(-1.0)) {

public virtual void Execute();

let BreakCommand S

protected MarsRover Rover { get; priv:
let TurnLeftCommand =

Command(fun rover -> rover.Rotate(-5.0<degs>)) public MarsRoverCommand(MarsRover rove

{
this.Rover = rover;
}
}
class BreakCommand : MarsRoverCommand
{
public BreakCommand(MarsRover rover)
base(rover)
{
}
public override void Execute()
{
Rover.Rotate(-5.0);
}
}
class TurnLeftCommand : MarsRoverCommand
{

public TurnLeftCommand(MarsRover rovel

Pleasure

type Expr =

True

And of Expr * Expr
Nand of Expr * Expr
Or of Expr * Expr
Xor of Expr * Expr
Not of Expr

http://stepheneasey.wordpress.com/tag/c/

Pain

public abstract class Expr { }
public abstract class UnaryOp :Expr

{

public Expr First { get; private set; }

public UnaryOp(Expr first)
{

}

this.First = first;

}

public abstract class BinExpr : Expr

{

public Expr First { get; private set; }
public Expr Second { get; private set; }

public BinExpr(Expr first, Expr second)

{
this.First = first;
this.Second = second;

}

public class TrueExpr : Expr { }

public class And : BinExpr
{

public And(Expr first., Expr second)

: base(fi

Pleasure =¥

let rotate (x,y,z) = (z,x,y) Tuple<V,T,U> Rotate(Tuple<T,U,V> t)
{

return new
Tuple<V,T,U>(t.Item3,t.Iteml,t.Item2);

}
let reduce f (x,y,z) = int Reduce(Func<T,int> f,Tuple<T,T,T> t)
fx+fy+ fz {

return f(t.Iteml) + f(t.Item2) + f
(t.Item3);

You
Can

Interoperate
With
Everything

Everything
Can
Interoperate
With

You

Economics

Fun!

F#: Influences

-~),

- ~
K\.—” \\ ’
-_

Similar core Similar object
language model

F#. Combining Paradigms

I've been coding in F# lately, for a production task.

F# allows you to move smoothly in your programming style...
| start with pure functional code, shift slightly towards an
object-oriented style, and in production code, | sometimes
have to do some imperative programming.

| can start with a pure idea, and still finish my project with
realistic code. You're never disappointed in any phase of the
project!

Julien Laugel, Chief Software Architect, www.eurostocks.com

F#: The Combination Counts!

Libraries
Scalable Explorative
Interoperable

Statically
Typed

F# In More Deta

Objects

Functional

Data

Functional
Core

Quick Tour

Comments

// comment

(* comment *)

/// XML doc comment
let x =

Quick Tour

Overloaded Arithmetic

Addition
Subtraction
Multiplication
Division
Remainder/modulus
Unary negation

Booleans

not expr Boolean negation
expr & & expr Boolean “and”
expr || expr Boolean “or”

Orthogonal & Unified Constructs

Type inference. The safety
of C# with the
succinctness of a scripting
language

» Let “let” simplify your life...

Bind a static value
let data = (1,2, 3)

Bind a static function let £(a,b,c)

let sum a + b + c

let g(x) = sum + x*x
g(a), g(b), g(c)

Bind a local value

Bind a local function

Demo: Let’'s We

Orthogonal & Unified Constructs

* Functions: like delegates + unified and simple

One simple
: VMGl
(fun x -> x + 1 mechanism, W predicate = 'a -> bool
many

uses send = 'a -> unit
Declare a

funCtlorthreadStart = unit -> unit

A pair

A function type |

a -> bool

equality =

F# - Functional

let £ x = x+1

let pair x = (x,x)

let fst (x,y) = x

let data = (Some [1l;2;3], Some [4;5;6])

match data with

Some (numsl), Some (nums2) -> numsl @ nums2
None, Some (nums) -> nums

Some (nums) , None -> nums

None, None -> failwith "missing!"

F# - Functional

List.map Seq. fold

Range
Array.filter Lazy Expressions Set.union

Map LazyList Events Async. ..
List via query

[0..1000]

[for x in 0..10 -> (x, x * x)]

[| for x in 0..10 -> (x, x * x) |]

seq { for x in 0..10 -> (x, x * x) }
IEnumerable
via query

Array via query

Immutability the norm...

// Part 1. Adjust some constants

let PI = 3.141592654 R
Data is immutable

PI <- 4.8 type Person = by default

: : { Name : string;
4 This value is not Birth: DateTime }

Error List

let bob =
{ Name = "bob";
Birth = DateTime(15,8,1980) }

[/ OK
let bobJunior =
{ bob with Birth = DateTime(23,5,2006) }

// Not 0Kl
Values may bob.Birth <- DateTime(23,5,2006)
not be
changed { Copy & Update

Error List
& 1 Error ||| 1\ 0 Warning

Description File

@ 1 error FS0005: This field is not mutable test.fs

In Praise of Immutability

* Immutable objects can be relied upon

Immutable objects can transfer between
threads

Immutable objects can be aliased safely

Immutable objects lead to (different)
optimization opportunities

F# - L I StS Generated

Lists

open System.IO
let rec allFiles(dir) =
[for file in Directory.GetFiles (dir) do
yield file
for sub in Directory.GetDirectories (dir) do
yield! allFiles(sub)]

allFiles(Q"C:\Demo")

F# - Sequences On-demand

sequences

open System.IO
let rec allFiles(dir) =
seq
{ for file in Directory.GetFiles (dir) do
yield file
for sub in Directory.GetDirectories(dir) do
yield! allFiles(sub) }
Pipelines
allFiles (Q@"C:\WINDOWS")
|> Seq.take 100
| > show

Weakly Typed? Slow?

//F#

#light

open System
let a = 2

Console.WritelLine(a)

°

//CH#
using System;

namespace ConsoleApplicationl

{

class Program

{

static int a()

{

return 2;

tic void Main(string]]

Console.WritelLine(a);

-

Typed

Yet rich,
dynamic

Efficient

Yet succinct

Objects

Class Types

type ObjectType(args) =

let internalvalue = expr
let internalFunction args
Tet mutable internalState

member x.Propl = expr
member x.Meth2 args = expr

Constructing Objects

new FileInfo(@"c:\misc\test.fs")

F# - Objects + Functional

type Vector2D (dx:double,dy:double) =

Inputs to

- object
member VDI construction
member v.DY = dy Exported
properties

member v.Length = sqrt (dx*dx+dy*dy)

member v.Scale (k) = Vector2D (dx*k,dy*k)

Exported
method

F# - Objects + Functional

type Vector2D (dx:double,dy:double) =

Internal (pre-
let norm2 = dx*dx+dy*dy computed) values

and functions
member v.DX = dx
member v.DY = dy

member v.Length = sqrt (norm2)

member v.Norm2 = norm?2

F# - Objects + Functional

Immutable
Inputs

type HuffmanEncoding (freq:seqg<char*int>) =

< 50 lines of beautiful functional code!

Internal
tables
member x.Encode (input: seqg<char>) =
encode (input) Publish
access

member x.Decode (input: seqg<char>) =
decode (input)

F# - Objects + Functional

type Vector2D (dx:double,dy:double) =

Internal state
let mutable currDX = dx

let mutable currDX = dy

Publish
Internal state

member v.DX = currDX

member v.DY = currDY

Mutate internal
Sstate

member v.Move(x,y) =
currDX <- currDX+x
currDY <- currDY+y

F# and adCenter

4 week project, 4 machine learning experts

100million probabilistic variables
Processes 6TB of training data

Real time processing

AdPredict: What We Q| s powertul type

Quick Coding
Agile Coding
Scripting
Performance
Memory-Faithful
Succinct
Symbolic

.NET Integration

typing, more thinking

Type-inferred code is
easily refactored

“Hands-on” exploration.

Immediate scaling to
massive data sets

mega-data structures,
16GB machines

Live in the domain,
not the language

Schema compilation

_ ~nd fCahedules”
Especially Excel, SQL

Server

Smooth Transitions

* Researcher’s Brain - Realistic, Efficient Code
» Realistic, Efficient Code > Component

« Component - Deployment

UNITS OF MEASUE

1985

SDI experiment:
The plan

http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png

http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png

http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png

NASA Mars Climate Orbiter, 1999
f LS

MAIN PAGE
WORLD
u.s.

LOCAL

PoLmcs Metric mishap caused loss of

WEATHER
BUSINESS

= NASA orbiter
TECHNOLOGY

SPACE September 20, 1

HEALTH d st 4

ENTERTAINMENT
BOOKS

TRAVEL

FOOD

ARTS & STYLE
NATURE

IN-DEPTH r points to nation's conversion la

ANALYSIS
N RELATED STORIES, SITES +

In this story:

ric system used by NASA for many

MASA's Climate Orbite
5 3, 1999
Headline News brief Semenmbey 22,3
MIEMWS OUZ
RS { Senior Writer

(CNN) -- NASA lost a 5125 million Mars orbiter becanse a Lockheed

vidso Martin engineering team used English units of measurement while the

video archive ' . .
T s team used the more conventional metric system for a kev

The units mismatch prevented navigation information from transferring
between the Mars Climate Orbiter spacecraft team in at Lockheed Martin in
Subsaribe to cne of our Denver and the flight team at NASA's Jet Propulsion Laboratory in

news e-mail | Pasadena. California.
Enter your add

NASA Mars Climate Orbiter, 1999
f LS

MAIN PAGE
WORLD
u.s.

LOCAL

PoLmcs Metric mishap caused loss of

WEATHER
BUSINESS

= NASA orbiter
TECHNOLOGY

SPACE September 20, 1

HEALTH d st 4

ENTERTAINMENT
BOOKS

TRAVEL

FOOD

ARTS & STYLE
NATURE

IN-DEPTH r points to nation's conversion la

ANALYSIS
N RELATED STORIES, SITES +

In this story:

ric system used by NASA for many

MASA's Climate Orbite
5 3, 1999
Headline News brief Semenmbey 22,3
MIEMWS OUZ
RS { Senior Writer

(CNN) -- NASA lost a 5125 million Mars orbiter becanse a Lockheed

vidso Martin engineering team used English units of measurement while the

video archive ' . .
T s team used the more conventional metric system for a kev

The units mismatch prevented navigation information from transferring
between the Mars Climate Orbiter spacecraft team in at Lockheed Martin in
Subsaribe to cne of our Denver and the flight team at NASA's Jet Propulsion Laboratory in

news e-mail | Pasadena. California.
Enter your add

let Earthmass = 5.9736e24<kg>

// Average between pole and equator radii
let EarthRadius = 6371.0e3<m>

// Gravitational acceleration on surface of Earth
let g = PhysicalConstants.G * EarthMmass / (EarthRadius * EarthRadius)

let EarthMass = 5.9736e24<Ma:
let EarthRadius 6371.0e3<M

let g = Math.PhysicalConstan
et va[’g : float<m/s *’y
III\\\

F# Async/Paral

A Building Block for
Async/Parallel/Reactive
Design Patterns

* For users:
You can run it, but it may take a while

Or, your builder says...

OK, I can do the job, but | might have to talk to someone else
about it. I'll get back to you when I'm done

DEMO

The F# ApprOaCh In parallel programming,

F# is a power tool

» Good Architecture for good architects and
- Know your techniques good developers
* Know your reguirements
« Know your limits (CPU, disk, network, latency)

* Translate Good Architecture into Good Code
with F#
+ A great platform
* A massive increase in isolation and immutability
« A massive reduction in mutation

Asynchronous "non-
blocking" action

do! writeAsync image2 "dog.jpg"
do printfn "done!"
return image2f}

Continuation/
Event callback

You're actually writing this (approximately):

async.Delay(fun () ->
async.Bind(ReadAsync "cat.jpg", (fun image ->
let image2 = f image
async.Bind(writeAsync "dog.jpg",(fun () ->

printfn "done!"
async.Return())))))

async{ ... }

* Built on a much more general mechanism called
“‘computation expressions”

seq{...} (queries/sequences)
eventStream { ... } (queries over event streams)
parser{... } (parser combinators)

resumable { ... } (resumptions)

DEMO

8 Ways to Learn

« FSl.exe http://cs.hubfs.net

 Codeplex Fsharp

« Samples Included Samples

« Go to definition

Books

 Lutz’ Reflector - ML

http://cs.hubfs.net/

Books about F#

Visit www.fsharp.net

http://fsharp.net/

Getting F#

» September 2008: CTP released

F# will be a supported language In
Visual Studio 2010

* Next stop: Visual Studio 2010 Beta 1

ook for it soon!

Questions & Dis

