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anything new under the sun?

Three function definitions in a language called Ursala

iprod = plus:-0.+ times*p
mmult = iprod*rlD*rK7lD
eudist = sqrt+ iprod+ ~&iiX+ minus*p

for three familiar vector operations

• inner product

• matrix multiplication

• Euclidean distance



salient features

• functional style

• single assignment

• no variables or loop counters

• no explicit function parameters required

• no type declarations required

• operators galore



what operators?

Old standards copied from Squiggol and FP

• functional composition f+f

• map over a list f*
• reduce over a list f:-a

• map over a pair f~~

• lots more

and new ones made to order on the fly

• duplicate ~&iiX

• map over the zip of a pair of lists (zipwith) f*p

• infinitely more



what else?

• numerical libraries

• arbitrary precision arithmetic

• 3-D graphics

• object-like smart records

• polymorphism

• financial derivatives data structures

• client/server interaction

• free open source license
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generalized identity functions

• deconstruct a pair
• ~&l (x,y) = x
• ~&r (x,y) = y

• deconstruct a list
• ~&h <u,v,w> = u
• ~&t <u,v,w> = <v,w>

• deconstruct a pair of lists
• ~&lt (<a,b,c>,<u,v,w>) = <b,c>
• ~&rh (<a,b,c>,<u,v,w>) = u

• or a list of pairs
• ~&thr <(a,b),(c,d),(e,f)>= d
• ~&tthl <(a,b),(c,d),(e,f)>)= e



generalized a little more

• atomically deconstruct and reconstruct a pair
~&rlX (x,y) = (y,x)

• do it to a pair of lists
~&rhPltPC (<a,b,c>,<u,v,w>)= <u,b,c>



can’t resist a little more

flip and zip!

~&rlxPp (’abc’,<1,2,3>) = <(1,‘c),(2,‘b),(3,‘a)>

flatten a tree!

~&dvLPCo ‘a^: <‘b^: <‘c^: <>, ‘d^: <>>, ‘e^: <>> = ’abcde’

what’s not to like about it?
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functions by the yard

“give me a list of n sinusoidal functions with wavelengths
ranging from s to l in geometric progression”

(sin_basis "n") ("s","l") =
(sin++ times/times(2.,pi)++ \/div)* geo"n"/"s" "l"
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functions by the yard
“make that a saw tooth family”

saw_basis "n" =
geo"n"; * -+

plin<(0.,0.),(0.25,1.),(0.75,-1.),(1.,0.)>+,
minus^(~&,math..trunc)++ \/div+-
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curve fitting with Lapack
“express a dataset in terms of a basis I might want to change”

(regression "b") "x" =
iprod/(coefficients"b" "x")+ gang "b"

coefficients "b" =
lapack..dgelsd^\~& gang"b"*+ float*+ iol
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dimensionality reduction

“show me the image in sinusoidal space”

sine basis coefficient
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surface rendering with LATEX

“I’m stuck for a poster presentation.”
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record declaration syntax

A user-defined container of heterogenous types

〈record mnemonic〉 ::

〈field identifier〉 〈type expression〉 〈initializing function〉
...

〈field identifier〉 〈type expression〉 〈initializing function〉

• fields can be functions or any other type

• fields can be automatically inferred from other fields

• invariants can be automatically maintained

• untyped, opaque, and free union fields are also possible



smart record example

A point record maintains both the polar and rectangular
representations, and has a default value of (0, 0).

x = r cos(t) r =
√

x2 + y2

y = r sin(t) t = arctan(y/x)



smart record example

A point record maintains both the polar and rectangular
representations, and has a default value of (0, 0).

point ::

x %eZ -|
-|~x,-&~r,~t,times^/~r cos+ ~t&-|-,
-|~r,! 0.|-|-

y %eZ -|~y,-&~r,~t,times^/~r sin+ ~t&-,! 0.|-
r %eZ -|

-|~r,-&~x,~y,sqrt+ plus+ sqr^~/~x ~y&-|-
-|~x,~y,! 0.|-|-

t %eZ -|
-|~t,-&~x,~y,math..atan2^/~y ~x&-|-,
-|~y&& ! div\2. pi,! 0.|-|-



parameterized records

An example of a polymorphic set parameterized by the base
type with the cardinality automatically maintained:

polyset "t" ::
elements "t"%S
cardinality %n length+ ~elements

usage examples:

realset = polyset %e

x = realset[elements: {1.0,2.0}]

y = (polyset %s)[elements: {’foo’,’bar’}]



parameterized records

Another example, a rose tree parameterized by a pair of types,
with node types alternating by level:

rose_tree ("x","y") ::
root "x"
subtrees (_rose_tree ("y","x"))%L

• Instantiate as rose_tree(%n,%e) for a type of tree with
a natural number in the root, IEEE double precision
numbers on the next level, naturals again below, and so on.

• Each node has a list of descendents.
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circular definitions

Suppose a function is decared in the form

f = d(f )

like this list reversal function, for example

rev = ~&i&& ("h":"t"). (rev "t")--<"h">

but the compiler doesn’t understand circular definitions.

What to do?



fixed point combinators

Use a fixed point combinator!

• f = d(f ) means f is a fixed point of d

• Plug d into a fixed point combinator to get f

A fixed point combinator for first order functions is given by

fix "d" = refer ("f","a"). ("d" refer "f") "a"

where (refer "f") "x" = "f" ("f","x")

For example

rev= fix "r". ~&i&& ("h":"t"). "r"("t")--<"h">

is a non-circular definition of list reversal.



why does this work?

(fix d) x
= (refer ("f","a"). (d refer "f") "a") x
= (("f","a"). (d refer "f") "a") (

("f","a"). (d refer "f") "a",
x)

= (d refer ("f","a"). (d refer "f") "a") x
= (d fix d) x

which implies

fix d = d fix d

so fix d is a fixed point of d



why do we care?

Arbitrary fixed point combinators can be nominated through the
#fix directive and used by the compiler for solving systems of
recurrences.

#fix "d". refer ("f","a"). ("d" refer "f") "a"

rev = ~&i&& ("h":"t"). (rev "t")-- <"h">



other applications
Recursively defined Petri nets

#import pnc
#fix pnc-fix

xor = do<getany<’a’,’b’>,put<’c’>,xor>

a

b

c



other applications
#fix fix_lifter(1) pnc-fix

xor("a","b","c") =
do<getany<"a","b">,put<"c">,xor>

net = xor(’x’,’y’,’z’)

x

y

z
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progress or aberration?

As a notation matures, explicit parameters are used less.
(Wolfram, Scott)

fix "d"
= refer ("f","a"). ("d" refer "f") "a"
= refer ^H("d"+ refer+ ~&f,~&a)
= refer ^|H("d"+ refer,~&)
= refer ^|H\~& "d"+ refer
= refer ^|H\~& refer; "d"

fix = refer+ ^|H\~&+ refer;



beautiful or useful?

Recall that if a first order function f satisfies

f = h(f)

then

f = fix h = fix "f". h("f")

Consider a generalization gfix of fix such that

f = "x1". . . . "xn". h(f,"x1". . ."xn")

implies

f = gfix(n)"f". "x1".. . ."xn". h("f","x1". . ."xn")



beautiful or useful?

Then

gfix 0 = fix

gfix 1 =

"h". /// refer ^H(
^H("h"+ ///+ refer+ ~&f,~&al),
~&ar)

gfix 2 =

"h". /// /// refer ^H(
^H(

^H("h"+ ///+ ///+ refer+ ~&f,~&all),
~&alr),

~&ar)



beautiful or useful?

Yes, but what’s the general case?

(look away now if squeamish)

Three possibilities:

• This notation is so rude that there has to be a better way.

• This idea is so unwelcome we shouldn’t care if it’s
inexpressible.

• Our aesthetic sensibilities need re-examination.



beautiful or useful?

Yes, but what’s the general case?

gfix =

iota; +^(~&l,+^/~&r ;+ ~&f;+ ~&l)^(
refer;+ -++-+ * ! ///,
-++-+ (/*/\ ^H)+ ~&iNX|\NNiXXS+ --<&>+ &r!*)

Three possibilities:

• This notation is so rude that there has to be a better way.

• This idea is so unwelcome we shouldn’t care if it’s
inexpressible.

• Our aesthetic sensibilities need re-examination.



Outline

1 Technical Overview
Data manipulation
Numerical libraries
Smart records
Recurrences over any domain

2 Lessons learned
On notation
Broader implications



language designers against
programmers

Why the relationship is inherently adversarial:

• expressiveness implies more labor saving features

• labor saving features lead to personal dialects

• less work for the writer means more work for the reader

• group productivity drops even if individual productivity rises

The language designer must give priority to the group and the
individual must conform. More reasons:

• cultural differences (academic versus commercial)

• axes to grind on both sides



further work

Work on Ursala’s expressive power is largely concluded.

Now start at the bottom and meet in the middle:

• know any new machines poking around for a better HLL?
(e.g. GPU, cloud, multi-core)

• raise the abstraction without hiding the metal

• scavenge features from Ursala to top it up

• try a significant practical application as a case study



(obvious) conclusions

• Programming languages are cultural artifacts that do not
exist in a vacuum.

• The technological problems of language design are
secondary.

• New languages can come into general use only when
circumstances permit.

• People with strong opinions about programming languages
can design their own and use them exclusively.

• Working in this area is necessarily its own reward.
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