Ten Years of Ownership Types,

the benefits of Putting
Objects into Boxes

Sophia Drossopoulou
Department of Computing, Imperial College London

We would like our surroundings™
to be "tidy”"

*surroundings = home, or desk, or code, or program heap,

This room
is a mess|

> 8
o+
c W
0
=
ltSn'
+ T O
o O
< £ 9
£
.._.I.W:mJ
S Q)
OV.-m
/NEC

A common pr'oblem in programming

[E1 File Edit e Faor ﬁrowse Bepol Qy Toolz Addlns wWindow Help =l=] =]
DDEI&\EI%I&"DIIIBI@I‘&Q@|

! | i ;
= :%T%:R"= I I I==2
e %j Seell
= ey R ==t
- =¥==- =
g e - =
- L V] B M 3 s B B, s e Y o
=] =1 ==
3 == Wi i e | =
_7 B RS e W =1 i
L él = :
| O T = =
=N L =
agy 2] 1
1 - ~

is that code /object topology is far too complex.

A common solution is to organize code/objects into "boxes”.

Over the last decade, several kinds of "boxes” have been
suggested with different aims.

Some of this work has concentrated on static type systems.

We shall discuss:
e Survey some of the work on boxes

e The associated heap topology
e MOJO: the need for multiple boxes

Ten years of ownership types ..

Research by J. Noble, J. Vitek, J. Potter, D. Clarke,
B. Liskov, M. Rinard, C. Boyapati, P. Mueller, J. Aldrich,

C. Chambers, M. Schwarzbach, A. Poetzsch-Heffter,

J Palsberg, A. Milanova, A. Routlev, P. S. Almeida, B.
Bokowski, J. Boyland, S. Drossopoulou, W. Dietl, R. Leino,
T. Wrigstad, Y. Lu, T. Zhao, A. Potanin, A. Rudich, , J.

Schdfer, M. Smith, A. Wren, A. Buckley, Y. Lu, D, Naumann,
A. Bannerjee

.. and many, many others.

.. it started, ten years ago, at ECOOP 1998
with a paper without implementation, without semantics

Flexible Alias Protection

James Noble!', Jan Vitek®, and John Potter!

! Microsoft Research Institute, Macquarie University, Sydney
_ kjx,potterdnri.ng.edu. an
* Object Systems Group, Université de Genéve, Geneva,
Jan.Vitek@cui.unige.ch

Abstract. Aliasing is endemic in ohject oriented programming, Because
an object can be modified via any alas, object onented programs are
hard to understand, mamtain, and analyse. Flezible alias protection 15 a
conceptual model of inter-object relationships which lmits the visibility
of changes via aliases, allowing objects to be aliased but mitigating the
undesirable effects of aliasing. Flexible alias protection can be checked
statically using programmer supplied aliasing modes and imposes no run-
time overhead. Using flexible alias protection, programs can incorporate
mutable abjects, immutable values, and updatable collections of shared
objects, n a natural object onented programming style, while aveiding
the problems caused by aliasing,

1 Introduction
I am who I am; I will be who I will be.

Object 1dentity is the foundation of object oriented programming, Objects are
useful for modelling application domain abstractions precisely because an ob-
ject’s 1dentity always remains the same during the execution of a program —

.. it started, ten years ago, at ECOOP 1998
with a paper without implementation, without semantics,
but with very compelling diagrams

Course Hashtable Student
erircl(student) .item) hashCode()
?ro (student) s |m)) mm} ’
nalise nal
report (_size 51— : —_ " |name{string)
. N e
wabie 7 | Cilom —[RawMark
\ Vol
[arm) G| [g=ma
Lecturer @ Student Studen‘;.
hashCode{) [:)] hashCode() hashCode()
number(} number() | number()
name() Ce3)] namef) /| nameq)
S Cs5) ’ |name(string) name(string)
Citem > mark(integer) (Citem = rkeger)
status() Cred) status()
finalise{)) finalise()

Fig. 4. A Course uses a hashtable as part of its representation (dark grev) while Student
and Lecturer objects are the course’s arguments (light grev). The hashtable also stores
RawMark objects for each student, and these are arguments to the hashtable but part
of the Course’s representation (mid gray), so cannot be accessed from outside the
Course (dotted arrows).

tainer objects. Flexible alias encapsulation separates the objects within an ag-

... and then, at OOPSLA 1998

Ownership Tvpes for Flexible Alias Protection
David G. Clarke, John M. Potter, James Noble

Microsoft Research Institute, Macquarie University, Svdney, Ausiralia
<elad potter kjx s @mriang.eduan

Abstract wadel of Hexible alias protection, supported by illustrative

examples. and suggested incorporating aliasing modes into
Object-oniented programming languages allow inter-objoct programning languages. For Hexible alias protection three
~12. - A lakiiaecble mcviiiiniiisaee B s scsccihamsssnh llaclascdd s PN . . . 1 .

.. a paper with a formal system

(Hed Field Update)
S AFe~eafS A 8 AR 018 A
S Abefd=e e 0|8 o Flfd 0] - A7

[Hed Sequence)
SOAL [-"1."J:I AI .":I A‘ L = B -"'!.-"SI A.
S AF eprea s /8 AT

D. Clarke and A. Buckley then developed implementations ...

Survey - 1

Boxes for Package Encapsulation
Bokowski, Vitek, Grothof, Palsberg,...

Boxes for Package Encapsulation

e some classes declared
confined within their package

e objects of confined type
encapsulated within package

Therefore

e "box" is a package; static
boxes

e owner as dominator: no
incoming references to a box

Properties guaranteed statically

Boxes for Package Encapsulation

e some classes declared package P1 {
: g : class A{ ... }

confined within their package class B{ ... }

e objects of confined type confined class ¢{ ...
encapsulated within package vackage P2

Ther'efor'e cl ass D{ L }

e "box" is a package; static confined class E{ ...
boxes }

e owner as dominator: no
incoming references to a box

Properties guaranteed statically

Boxes for Package Encapsulation

e some classes declared package P1 {
: g : class A{ ... }

confined within their package class B{ ... }

e objects of confined type confined class ¢{ ...
encapsulated within package vackage P2

Ther'efor'e cl ass D{ L }

e "box" is a package; static confined class E{ ...
boxes }

e ownher as dominator: no

with a possible heap:
incoming references to a box

Properties guaranteed statically

Boxes for Package Encapsulation

e some classes declared package P1 {
: g : class A{ ... }

confined within their package class B{ ... }

e objects of confined type confined class ¢{ ...
encapsulated within package vackage P2

Ther'efor'e cl ass D{ L }

e "box" is a package; static confined class E{ ...
boxes }

e ownher as dominator: no

with a possible heap:
incoming references to a box

Properties guaranteed statically

Boxes for Package Encapsulation

e some classes declared package P1 {
: L : class A{ ... }

confined within their package class B{ ... }

e objects of confined type confined class C¢{ ...
encapsulated within package vackage P2

Therefore class D{ ... }

e "box" is a package; static confined class Ef ...
boxes }

e owner as dominator: no

. , with a possible heap:
incoming references to a box

Properties guaranteed statically

Code from one package won't
run on confined objects from
another.

Survey - 2

Boxes for Object Encapsulation

Aldrich, Biddle, Boyapati, Chambers, Clarke, Drossopoulou,
Khrishnaswami, Kostadinov, Liskov, Lu, Noble, Potanin, Potter,
Vitek, Shrira, Wrigstad, ...

Boxes for Object Encapsulation
- Clarke, Noble, Potter, Vitek,..

e each object belongs in a box;

e each box is characterized by
an object (its owner)

e objects may hold references
to objects in enclosing boxes

Therefore

e tree hierarchy of objects

e owner as dominator: no
incoming references to a box

a possible heap:

Properties guaranteed statically & o e ;

LA AL L LI I I L LR L LI I XL L LN]
XX XXX XX X R X X X R R NN Y Y Y Y N N XX ¥)

Boxes for Object Encapsulation - An Example

, , "Java" code
An employee is responsible for a

sequence of tasks. Each task has class Enpl oyee {
a duration and a due date. List tasks;

}
When an employee is delayed, class List {
h of his tasks gets delayed old del s
each of his tasks gets delaye voi d del ay(){ ...
accordingly. }
cl ass Node {
Nod t;
An employee is OK, if all his Tasﬁ PZék;
tasks are within the due dates. \ void delay(){ ...

cl ass Task {

void delay(){ ...

voi d delay(j{....

Boxes for Object Encapsulation - An Example

"Java" code

cl ass Enpl oyee {
Li st tasks;

void delay(){ ...

}
class List {

Node first;

void delay(){ ...
}
cl ass Node {

Node next;

Task task;

void delay(){ ...
}

cl ass Task {

voi d delay(){ ...

bl

possible heap

Boxes for Object Encapsulation - An Example

with a possible heap:

O
<
o

l

owns" his tasks

\\}

Employee
the list.

owns" its nodes.

1))

The list

Boxes for Object Encapsulation - An Example

Each object owned by another,
eg 1 owns 2, 5, 6. Thus, classes

have owner parameter, eg
cl ass Li st <o>{

and types mention owners, eg
Li st <t hi s>

Objects may have fields pointing

to enclosing boxes, eg 3.

Classes have as many ownership

}

parameters, as boxes involved

cl ass Node<ol, 02>{
Node<o1l, 02> next;
Task<o02> task; ..

}

with a possible heap:

LA X N N N N N N J
-------q
L X N N N N XN N XN J

Boxes for Object Encapsulation - An Example

"Java + OT" code
cl ass Enpl oyee<o> { with a possible heap:
Li st <t hi s> t asks;

void delay(){ ... }
}
cl ass List<o0l>{
Node<t hi s, 01> first;
void delay(){ ... }

}

cl ass Node<o01l, 02>{
Node<ol, 02> next;
Task<o02> t ask;
void delay(){ ... }

}

cl ass Task<o>{ C.
void delay(){ ... } }

Boxes for Object Encapsulation - An Example

cl ass Enpl oyee<o> {

Li st <t hi s> tasks; ; ; :
’ with a possible heap:
void delay(){ ... } P P
}
cl ass List<o0l>{ N iU o0
Node<t his, 01> first; ' '
\ void delay(){ ... } E . , . E
0 ! 0 % :
cl ass Node<ol, 02>{ o ' o ol
Node<ol, 02> next ; x ' 0 ' e
Task<02> t ask; s S 1 R e I
} void delay(){ ... } : 5: 5
0 .l]
cl ass Task<o>{ . ! ¥ !
void delay(){ ... } } 5 55 0
0]

Employee "controls” its tasks; list controls its links.

Please turn the
volume down.

—
This will not make my
room any tidier!

N 7

—

radi o. vol uneDown() #room TI DY()

\

Boxes for Property Encapsulation
Clarke, Drossopoulou, Smith

We want to be able to argue for "different” employees el, e2:
elite2 el.delay() #e2. OK()

Approach: Boxes characterize
the parts of heap affecting/ed

by some execution/property. SN § S :
For example: : §
1.delay() : 1.under R e W S i

7. OK() : 7.under

DiSjOin'l' boxes = independence ----------------------

Boxes for Property Encapsulation - An Example

Approach: we add effects to methods:
cl ass Enpl oyee<o> {...

voi d delay():this.under
}

cl ass List{...
voi d delay():ol.under

) i .
cl ass Node<ol, 02>{. .. ol ‘! Pl
voi d del ay(): 02. under P fecefenccocoocecyen ‘ o
} : = :
cl ass Task<o>{ : ; :
voi d del ay(): o. under E ' :
} -----------------------------------
Therefore, el.delay() : el.under
e2. K() : e2.under
Because elffe2 el.under # e2. under

we have elffe2 el.del ay() # e2. OK()

Boxes for Scoped Memory

Zhao, Noble, Vitek, Sacianu, Boyapati, Beebee, Rinard
Exploit owners as dominators property, to reclaim whole memory
areas rather than individual objects, in presence of multithreading

Here, 2, 3, and 4 belong in one
memory scope and reclaimed
together. Then, 1, 5 and 6 belong
to the parent memory scope.

Memory areas organized
hierarchically. Threads
enter/leave memory scopes
consistent with the hierarchy.
Scoped memory used in unmanned airplanes (Vitek & Noble)

Survey - 3

Boxes for Concurrency
Boyapati, Lee, Liskov, Rinard, Salcianu, Shrira, Whaley, ...

and also
Abadi, Flanagan, Freund, Qadeer,

and also
Cunningham, Eisenbach, Drossopoulou

Boxes for Concurrency

To avoid races/quarantee atomicity, a thread must have acquired the
lock to an object before accessing it. The owner of a box stands for
the lock of all the contained objects.

A thread must lock 1 before
accessing 1, 5, or 6 - ie no need
to lock objects individusally.

.--.----'
I X X X X X X X N N J
X XX X XX X X X ¥)

Threads must lock 2 before
accessing 2, 3, or 4. -

Note
e no nesting of boxes
e owners not dominators
e owners as locks.

Survey - 4

Boxes for Program Verification

Barnett, Bannerjee, Darvas, Deline, Dietl, Faehndrich, Jacobs,
Leavens, Leino, Logozzo, Mueller, Naumann, Parkinson, Piessens,

Poetzsch-Heffter, Schulte ...

Boxes for Verification

An object "owns" other objects; the owner's invariant depends on the
properties of the owned object.

A company is OK, if all its
employees are OK. An employee
is OK, if all his tasks are on
time.

Note:
e owners may change; (5 may
move to 7)
e no owners as dominators; (3
may have reference to 9)
e owner as modifier (3 may
hot change 9)

cosccsasa

Survey - 5

Boxes for Program Architecture

Chambers, Aldrich, Krisnaswami,

Boxes as Ownership Domains

Objects "own" boxes. Link statements allow references across boxes

cl ass Bank {

A Bank has several branches : .
domai n branches, archive;

and an archive. A branch has Br anch<br anches> br1, br2:
tellers and a vault. Customers Dat a<ar chi ve> d1, d2, d3;
are allowed access to the tellers, } link b.customer & branches...
bUT not The vaults. cl ass Br anch<b1>{

domain vault, tellers;
Saf e<vaul t> s1, s2;
Cahier<teller> cl1, c3;
link bl &teller;

cl ass Mai n {
domai n custoner, shop;
Bank<shop> b1l;
Per son<cust oner> pl, p2 };

cl ass Bank { cl ass Branch<bl>{

domai n branches, archive; domain vault, tellers;
Br anch<br anches> br1, br2; Saf e<vaul t > s1, s2;
Dat a<ar chi ve> d1, d2, d3;: Cashier<teller> c1,c2; link

| ink b.custoner & branchesbl & teller;

}

2: Person

Aldrich at al have developed tools with extract such architectural
descriptions from the program code

Survey - Summary

Box is a M/D nest TR |Objhas | Objin
dpth ? boxes boxes
Confined package | OAD 1 no 1 1
types
Object object OAD n some 1 1
Encapsulation
Locking |object or| none n ho 1 1
thread
Universes object OAM n yes 1 1
Boogie
Ownership | "object” | none n nho n 1
domaind

Where OAM = owners as modifier; OAD = owner as dominator;
TR = ownership transfer

However ...

%no IS mine
No it is }

mme

OK, let us
share it!

Common Ownership - The Classic Way

Put the nano in the most
enclosing inner box.

class Fam | y<o> {...
| Pod<t hi s> nano;
Daught er <t hi s> ni cky;
Par ent <t hi s> sophi a;

then:

@icky:DaughteC)/"'—_\\\\’A
(ﬁano:iPod
(sophia: Parent>\/

Common Ownership - The Classic Way - Limitations

(]
(]
(]
(]
(]
(]
(]
J
M
job}
=]
<
(]
(]
(]
]
(]
]
(]
(]
(]
(]
(]
(]
(]
]
]
(]
(]
(]
(]
(]
(]

However, the family also includes
athena and constantine. Therefore,
they too will get their hands on the
nano....

(athena: Daughter

Q]icky: Daughter

(nano ; iPod)
(sophia: Parentu

(constantine: Parent

Common Ownership - The Universes Way

Give sophia a readonly
reference to the nano.

cl ass Daughter {...
rep i Pod nano;

}

cl ass Parent {...
readonly i Pod nano;

}

then, sophia can listen to the
nano.

Common Ownership - the Universes Way - Limitations

However, then, sophia cannot
switch the nano on or off!

Common Ownership - Ownership Domains Way

Put sophia and nicky in the same
ownership domain, with access to
the domain containing nano.

cl ass Daughter { ... }

class Parent { ... }

cl ass Toget her {
publ i c domai n peopl e;
domai n nusi c;

(hMKy:Daugh&wj}/’i__“‘\\\\§§
| i nk peopl e->nusi c;

(ﬁano:iPod]
peopl e Daughter nicky; g

(sophia: Parew_/
peopl e Parent sophi a; 5

musi ¢ i1 Pod nano; } - emeeeeeecesaseesesesechecsecsecececesaene
then, only sophia and nicky can
manipulate nano.

Common Ownership - Ownership Domains Way - Limitations

However, what if sophia wanted Together}"- ----- - .u.src] -------

to \
_ nlck Daughter
e share the nano with nicky, Y g D/_\
and also :

e share the walkman with
constantine?

Csophla Parem/

(nano iPod E

(constantine: Parent) (walkman: Sony)

We developed

MOJO, Multiple Ownership for Java Objects

Multiple Ownership -- OOPSLA 2007

e allow more than one hierarchy
e allow more than one owner

Multiple Ownership

Nicholas R Cameron, James Noble * Matthew J Smith
Sophia Drossopoulou School of Mathematics, Statistics Department of Computing,
Department of Computing, & Computer Science, Imperial College London, UK
Imperial College London, UK Vietoria University of Wellington, mjs198@doc.ic.ac.uk

New Zealand

{ncameron, sd}@doc.ic.ac.uk
kjx@mcs.vuw.ac.nz

Abstract 1. Introduction

Ezxisting ownership type systems require objects to have We're tired of trees... We should stop believ-
precisely one primary owner, organizing the heap into ing in trees, roots, and radicles.

an ownership tree. Unfortunately, a tree structure is too

restrictive for many progralms, and prevents many col- Delenze and Guat,t,arj, A Thousand Plateans []_"r']

mon design patterns where multiple objects interact.

Multiple Ownership - An Example

Tasks and employees as before.

A project consists of a sequence
of tasks.

When a project is delayed, its
tasks get delayed accordingly.

A project is OK, if all its tasks
are within their due dates.

In the code we omit Node class.

"Java" code

cl ass Enpl oyee {
ELi st tasks;

void delay(){ ...

class Project {
Li st tasks;

void delay(){ ...

class List {
Li st next;
Task task;

void delay(){ ...

cl ass Task {

voi d delaykj{ .

bl

bl

bl

Multiple Ownership - An Example

cl ass Enpl oyee {
Li st tasks;
void delay(){ ... } }

class Project {
Li st tasks;

void delay(){ ... } }

class List {
Li st next;
Task task;
void delay(){ ... } }

class Task { ...
void delay(){ ... }; }

We want: elffe2 +— el.delay() # e2. K()

plip2 +— pl.delay() # p2. OK()

Need to express that a task belongs to an employee anda project, e.g.

€

(]
(]
0
0
0
0
0
0
0
0
=
=
mv)
(]

task 5 is owned by Employee 1, andProject 11.
Here, Task< 1&11 >

In general, we allow types like
A<01é&o02, 03, 05&06>
or
A<olé&any, 03, any>

In a type, we say any, when actual owner unknown (cf readonly).

Multiple Ownership

cl ass Enpl oyee<o> {
Li st<this,this> tasks;
void delay(){ ... } }

cl ass Project<o> {
Li st<this,this> tasks;
void delay(){ ... } }

cl ass List<ol, 02> {
Li st <01, 02> next;
Task<ol, 02& any> t ask;

void delay(){ ... } }
cl ass Task{ ...
void delay(){ ... }; }

=
=

dococoveocsses

LR X XX T LN XXX XXX ¥ J

----------‘----ﬂ

NOTE: © Task class unaware of number of owners. ©
NOTE: ® List class aware of number of owners. ®

BEGIN ASIDE: the meaning of any
any = corresponding owner is unknown, but fixed;
We have to distinguish the dont know from the don’t care use of any.

cl ass List<ol, 02> {

Li st <ol, 02> next:

}

Li st <04, o5&any> | 1; /[l any as don’t care

BEGIN ASIDE: the meaning of any
any = corresponding owner is unknown, but fixed;
We have to distinguish the dont know from the don’t care use of any.

cl ass List<ol, 02> {

}

Li st <ol, 02> next:

Li st <04, o5&any> | 1;

e

1
1
1

= new Li st <04, 05&06>;
= new Li st <04, 05&07&08>;

. hext;

. hext: = new Li st <04, 05&06>;
. next: =

| 1;

/[l any as don’t care
[l OK
Il OK

Li st <04, o5&any>
[/ any as don’t know

ERROR
ERROR

To distinguish the don't care from the don't know, we employ
different field lookup functions upon field read and upon field write,

For field read

I'kFe:t
fType(t, f,e,T) =1t
F'kef:t

fType(c<Q>, f.e,T) = [Q/p](t"?) where t = fType™* (c<F>,)

gives | 1. next; : List<o4, o5&any>

To distinguish the don't care from the don't know, we employ
different field lookup functions upon field read and upon field write,

For field read

gives | 1. next; : List<o4, o5&any>

On the other hand, for field write

I'ke:t
fTypestrct(t, f.e.T) =t
I'ke' :t

'+ f-‘.f:f-"! t

fTypes e Q>. foe.T) = [Q/p]*" ', where t= fType®(c<P>,f) and t' = t'¢
gives | 1. next:= new List<o4, 05&06>; : ERRCR

END ASIDE

We want to be able to argue:
elffe2 el.del ay() # e2. OK()

We first define when an object is "inside" another object, i.e. L.« L’ as the

minimal reflexive, transitive relation, such that
if one of the owners of Lis U then L« U

Therefore

5«5
5«1
5«11

[P -

ceccccpeccsnccsnas

Define run-time effects: x ::= | x.undr | X& X

meaning:
[[v]] = {0}
[x.undr]I = {uluv«[[x]]}
[X & X"]I = [Ix]I nIIx]I

[1]1={11}
[[1.under]]=1{ 1,2,3,4,5 }
[[1.under & 11.under]] ={ 5 }

[[1. under & 6.under]] = O

Define also an effects annotation system, which gives
cl ass Enpl oyee<o> {
List<this,this > tasks; void
voi d del ay()this&any. undr {..}
}

cl ass Project<o> {

voi d del ay() this&any.undr {.}
}

cl ass List<ol, 02> {

focoooososees

coeosoeoposroossooses

voi d del ay()o2. undr {.}}
}

cl ass Task<o>{ :
voi d delay()this.undr{.}

}

ccsssssecscsssbaccscaa

For stack s and heap h, define [[$]]sn the obvious way.

Define judgement ' ¢ # ¢’ to denote disjointness of effects

Lemma:

= s, h M- ¢ #¢’ = [[Pllsh N [P]lsph =Y

Execution of an expression does not require/modify more than what is
described by the read/write effects:

Theorem: -
M _ *
TFg e:d1 TH, e:d> h= [[¢]]_]S’h h: .
e s h s [[D11lsh = [[P2]]lsn™ hs3
, h’=h”* hs3™* h>
e,s,h~v, h
_ e, s, [[p2]]sn*h3 ~ v, h”’*hs3

~ for some hz, hs3, h”

Thus, el.delay() : (el&any).under
e2. XK() : (e2&any). under

Because elffe2 + (el&any). under # (e2&any). under
we have elffe2 ~ el.delay() # e2. OK()
Similarly, pl#p2 + pl.delay() # p2. OK()

©

Can I preserve owners as dominators?

Yes, in a way, if we

e require that in each type definition the actual owner parameters are
"within" the actual context parameters,

e define a program "slice”, Pi, where each class as a "selected” ownership
parameter out of the may ownership parameters.

e For each slice, we filter the heap, by dropping any field whose selected
owner is not “outside” the selected owner parameter of the defining
class.

Can I preserve owners as dominators? yes, partly

Yes, in a way, if we

e require that in each type definition the actual owner parameters are
"within" the actual context parameters,

e define a program "slice”, Pi, where each class as a "selected” ownership
parameter out of the may ownership parameters.

e For each slice, we filter the heap, by dropping any field whose selected
owner is not “outside” the selected owner parameter of the defining
class.

Then
e For each of the slices, the selected owners are dominators in the
correspondingly filtered heap.

Preserving owners as dominators - partly - P1 slice

Selected owner hi gl i ght ed,

cl ass Task<ol,02:>{ ... }

cl ass Enpl oyee<o: > {
ELi st <t hi s: > tasks;

}

cl ass ELi st<o:> {
ELi st <o: > next;
Task<o, any: > task;

}

cl ass Project<o:> {
PList<this:> tasks; ... }

cl ass PList<o:> {
PLi st <0: > next;
Task<any, o: > t ask;

}

Preserving owners as dominators - partly - P1 slice

Selected owner hi gl i ght ed,
// and fields filtered out
cl ass Task<ol,02:>{ ... }

cl ass Enpl oyee<o: > {
ELi st <t hi s: > tasks;

}

cl ass ELi st<o:> {
ELi st <0: > next;
Task<o, any: > t ask;

}

cl ass Project<o:> {
PList<this:> tasks; ... }

cl ass PLi st<o: > {
PLi st <o0: > next;
/| Task<any, o: > task;

}

Preserving owners as dominators - partly - P2 slice

Selected owner hi gl i ght ed

cl ass Task<ol,o02:>{ ... }

cl ass Enpl oyee<o: > {
ELi st<thi s: > tasks;

}

class ELi st<o:> {
ELi st <0: > next;
Task<o, any: > t ask;

.

cl ass Project<o:> {
PList<this:> tasks; ... }

cl ass PList<o:> {
PLi st <0: > next;
Task<any, o: > t ask;

}

Preserving owners as dominators - partly - P2 slice

Selected owner hi gl i ght ed,

// and fields filtered out
cl ass Task<ol, 02: >{

cl ass Enpl oyee<o: > {
ELi st <t hi s: > tasks;

}

cl ass ELi st<o:> {
ELi st <o: > next;
/| Task<o, any: > task;
c.o.)
cl ass Project<o:> {
PLi st <t hi s: > tasks;

cl ass PList<o:> {
PLi st <0: > next;
Task<any, o: > t ask;

}

Multiple Owners and Aspects
Aside: I started tackling this problem (independence of actions and
assertions in the presence of “overlapping topologies") unsuccessfully by
filtering out fields in and of f for the three years. Multiple owners was the
missing link, and in particular the idea of intersection - remember basic set
theory?

Looking for an AOP view, where
the program is

P=PleP2e..Pn
the heap is

h=hleo .. ®hn

and execution of P consists of the combination of execution of P1,P2,..., Pn,
and preserves some of the properties established in the context of Pi.

hl1® h2=h0 * h3* h4 where hl1=h0*h3 and h2=h0* h4

Multiple Ownership - Conclusions
multiple owners are possible,
multiple owners describe realistic object topologies,
and thus document programmer’s intuitions,
multiple owners can be used to argue disjointness.

Multiple Ownership - Further Work
refine type system (any as existential, refine scope),
apply to concurrency and verification,
AOP: combine two programs into one program with
multiple ownership hierarchies.

Putting MOJO into Context

Box is a M/D nest TR |Objhas | Obj in
dpth ? boxes boxes
Confined package | OAD 1 no 1 1
types
Object object OAD n some 1 1
Encapsulation
Locking |object or| none n ho 1 1
thread
Universes object OAM n yes 1 1
Boogie
Ownership | "object” | none n nho n 1
domains
MOJO “object” | none n no 1 n

where OAM = owners as modifier; OAD = owner as dominator;

TR = ownership transfer

The Benefits of Putting Objects into Boxes
Conclusions
"boxes" express and preserve a topology in the object
heap;
topology exploited for different goals, eg encapsulation,
memory management, program verification, concurrency

different goals impose slightly different constraints and
notations - a unification would be nice (pluggable types).

notation heavy in some cases; some nice simplifications
exist, more are currently being developed.

type inference exists for some systems, more would be
good.

.. hot bad for a paper without implementation, without
semantics, but with compelling diagrams,

Flexible Alias Protection

James Naoble!, Jan Vitek”, and John Potter!

! Microsoft Research Institute, Macquarie University, Sydnev
kjx,potterdmri.mg. edu. au
? Object Svstems Group, Université de Genive, Geneva.
Jan.Vitek®cui . unige. ch

Abstract. Aliasing is endemic in object oriented programming. Because
an objoct can be modified via any alias, chject oriented programs are

Ten years, later, we have many implementations, many
semantics, vibrant research, diverse application areas,
many further publications (eg 3 in ECOOP 07, 3 in OOPSLA
07), and recognition (J. Aldrich awarded the Junior
Dahl/Nygaard Prize in 2007).

Thank youl

