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Moore's law: the free lunch
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Source: table from http://www.intel.com/technology/mooreslaw/index.htm



The free lunch is over
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Using multi-cores: space scheduling
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e Partition resources
between concurrent
apps or VMs

« Machine
consolidation

* Preserve
responsiveness

* VMs for stronger
Isolation



Using multi-cores: control parallelism
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Using multi-cores: data parallelism
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» Exploit data

parallelism in large
computations

* OpenMP
* Nested data-

parallelism



What about existing client code?

» Centred around interactions with a single
user...

— No easy parallelism through multiple clients
* Not written with parallelism in mind...

— No explicit threading for performance
— No calls onto parallel libraries



Implicit parallelism

for (inti=0;i<100; i++){_— Run each iteration in

MyFunction(i); parallel?
}

F3(x) in parallel?

F1(F2(x), F3(x)) ﬁ Evaluate F2(x) and




The key problems

» Getting the granularity right

for (inti=0;i<16; i++){
x[i]++;

}

» Keeping It transparent

for (inti=0;i<16; i++) {
total += x[i];

}



Overview

Haskell
Limit study: is there anything out there?

Making it more real: what does the
granularity look like?

Actual implementation: can we get a free
lunch after all?



Haskell

“lazy” : values aren’t
computed until they’re
actually needed
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A toy example: Fibonacci

fib0=0
fib1 =1
fib n = fib (n-1) + fib (n-2)

Load it into an
interpreter

“Force” fib(10) to be
evaluated... which forces
fib(9) & fib(8)...




Running the toy example

“Thunk”
for “fib 10”
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Thunk lifecycle
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Thunk dependencies
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Potential parallelism
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Limit study

Thunk size
threshold (100,

1k, 10k... 10M
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Speedup
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Which thunks to select?

Select based on thunk allocation site
Binary spark / no-spark decision
Threshold for needed/not-needed (3/4)
Consider total work for allocation site
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Avoiding duplicate work

» By default GHC does not prevent
concurrent evaluation of the same thunk

* But here the penalty iIs bad

— We're selecting big thunks
— Independence of thunk evaluation is
compromised
» We add a level of locking to avoid
duplication



Avoiding speculation of unsafe 1/O

» Dynamically detect attempts to perform
unsafe I/O while speculating

» Upon detection suspend speculation of
current thunk

» Defined using new |/O action which has no
side effect in application thread but
suspends under speculation



Measured performance
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Avoiding slow-downs




Batcher’s Parallel Sorter



Parallelism in the sorter

two :: ([a] -> [b]) -> [a] -> [b]
two r = halve >-> toBoth r r >-> unhalve
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Future work

» Can we use a single program execution
that avoids the need for a profile-collection
ohase?

 Impact of adjusting optimization level

 Use of feedback information to guide
manual parallelization




Conclusions

 For selected programs an automatic
speedup of 10-80% can be achieved

« Simulator can identify programs that are
not amenable to automatic parallelization

* Not a silver bullet but does provide an
interesting approach for parallelizing single
application across 2, 3 or 4 cores



