
Multi-core programming with
automatic parallelisation

Tim Harris and Satnam Singh

Microsoft Research Cambridge

Moore’s law; the free lunch

Source: table from http://www.intel.com/technology/mooreslaw/index.htm

4004

8086

Intel 486

Intel 386

286

Intel
Pentium

Intel
Pentium II

Intel
Pentium 4 Intel

Itanium 2

The free lunch is over

Transparent CPU
perf increase

Homogeneous
multi-core

Heterogeneous
multi-core

Using multi-cores: space scheduling

• Partition resources
between concurrent
apps or VMs

• Machine
consolidation

• Preserve
responsiveness

• VMs for stronger
isolation

Using multi-cores: control parallelism

• Find control-
parallelism within an
app

• Multiple threads in a
shared address space

• Handle different
clients

• GC, indexing, etc
concurrent with
application work

Using multi-cores: data parallelism

0 1 3

2 3 5

0 1 3

2 7 5

6 5 3

2 4 5

9 1 3

2 3 5

• Exploit data
parallelism in large
computations

• OpenMP

• Nested data-
parallelism

What about existing client code?

• Centred around interactions with a single
user...

– No easy parallelism through multiple clients

• Not written with parallelism in mind...

– No explicit threading for performance

– No calls onto parallel libraries

Implicit parallelism

for (int i = 0; i < 100; i++) {

MyFunction(i);

}

Run each iteration in
parallel?

F1(F2(x), F3(x))
Evaluate F2(x) and
F3(x) in parallel?

The key problems

• Getting the granularity right

for (int i = 0; i < 16; i++) {

x[i]++;

}

• Keeping it transparent

for (int i = 0; i < 16; i++) {

total += x[i];

}

Overview

• Haskell

• Limit study: is there anything out there?

• Making it more real: what does the
granularity look like?

• Actual implementation: can we get a free
lunch after all?

Haskell
“lazy” : values aren’t

computed until they’re
actually needed

“purely functional” :
computing a value

doesn’t have side effects

A toy example: Fibonacci

fib 0 = 0

fib 1 = 1

fib n = fib (n-1) + fib (n-2)

Load it into an
interpreter

“Force” fib(10) to be
evaluated… which forces

fib(9) & fib(8)…

Running the toy example

fib 0 = 0

fib 1 = 1

fib n = fib (n-1) + fib (n-2)

10

9

8

3

5

8
6

5
8

1 1
“Thunk”

for “fib 10”

Pointer to the
implementation

Storage slot for
the result

Values for free
variables

Overview

• Haskell

• Limit study: is there anything out there?

• Making it more real: what does the
granularity look like?

• Actual implementation: can we get a free
lunch after all?

Thunk lifecycle

Allocation
time

Entry
time

Update
time

Could start
work on it

here

We use its
result here

GC

We know
we’ll need it

here

Thunk dependencies

fib(3)

Time

fib(0)

fib(1)

fib(1)

fib(2)

Allocation
dependencies

Update
dependencies

Potential parallelism

fib(3)

Time

fib(0)

fib(1)

fib(1)

fib(2)

Limit study

1

2

4

8

16

32

64

128

256 Speedup
achieved

Thunk size
threshold (100,
1k, 10k… 10M

cycles)

Overview

• Haskell

• Limit study: is there anything out there?

• Making it more real: what does the
granularity look like?

• Actual implementation: can we get a free
lunch after all?

Which thunks to select?

• Select based on thunk allocation site

• Binary spark / no-spark decision

• Threshold for needed/not-needed (3/4)

• Consider total work for allocation site

Simulation, select by alloc site

1

2

4

8

16

32

64

128

256
Select all
thunks

Select all
100k+

Predict by allocation
site (100k, 250k,

500k, 1M)

Overview

• Haskell

• Limit study: is there anything out there?

• Making it more real: what does the
granularity look like?

• Actual implementation: can we get a free
lunch after all?

Avoiding duplicate work

• By default GHC does not prevent
concurrent evaluation of the same thunk

• But here the penalty is bad
– We’re selecting big thunks

– Independence of thunk evaluation is
compromised

• We add a level of locking to avoid
duplication

Avoiding speculation of unsafe I/O

• Dynamically detect attempts to perform
unsafe I/O while speculating

• Upon detection suspend speculation of
current thunk

• Defined using new I/O action which has no
side effect in application thread but
suspends under speculation

0

0.5

1

1.5

2
1

2

3

4

#cores

Measured performance

0

0.5

1

1.5

2

Avoiding slow-downs _________

1

2

4

8

16

32

64

128

256

Batcher’s Parallel Sorter

Parallelism in the sorter

two :: ([a] -> [b]) -> [a] -> [b]
two r = halve >-> toBoth r r >-> unhalve

Related work

• Parallel function programming [Hammond 94].

• Speculative evaluation in Multilisp [Osborne 90].

• par and seq [Roe 91].

• Parallel strategies [Trinder et. al. 98].

• Combining non-strictness with eager evaluation:
Id90 and pH [Nikhil and Arvind 01].

• Fine grain concurrency: Monsson [Traub 91].

• Optimistic evaluation [Ennals and Peyton-Jones 03].

• GranSim [Loidl 98].

Future work

• Can we use a single program execution
that avoids the need for a profile-collection
phase?

• Impact of adjusting optimization level

• Use of feedback information to guide
manual parallelization

Conclusions

• For selected programs an automatic
speedup of 10-80% can be achieved

• Simulator can identify programs that are
not amenable to automatic parallelization

• Not a silver bullet but does provide an
interesting approach for parallelizing single
application across 2, 3 or 4 cores

