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Moore’s law; the free lunch

Source: table from http://www.intel.com/technology/mooreslaw/index.htm
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Transparent CPU 
perf increase

Homogeneous
multi-core

Heterogeneous
multi-core



Using multi-cores: space scheduling

• Partition resources 
between concurrent 
apps or VMs

• Machine 
consolidation

• Preserve 
responsiveness

• VMs for stronger 
isolation



Using multi-cores: control parallelism

• Find control-
parallelism within an 
app

• Multiple threads in a 
shared address space

• Handle different 
clients

• GC, indexing, etc 
concurrent with 
application work



Using multi-cores: data parallelism
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• Exploit data 
parallelism in large 
computations

• OpenMP

• Nested data-
parallelism



What about existing client code?

• Centred around interactions with a single 
user...

– No easy parallelism through multiple clients

• Not written with parallelism in mind...

– No explicit threading for performance

– No calls onto parallel libraries



Implicit parallelism

for (int i = 0; i < 100; i++) {

MyFunction(i);

}

Run each iteration in 
parallel?

F1(F2(x), F3(x))
Evaluate F2(x) and 
F3(x) in parallel?



The key problems

• Getting the granularity right

for (int i = 0; i < 16; i++) {

x[i]++;

}

• Keeping it transparent

for (int i = 0; i < 16; i++) {

total += x[i];

}



Overview

• Haskell

• Limit study: is there anything out there?

• Making it more real: what does the 
granularity look like?

• Actual implementation: can we get a free 
lunch after all?



Haskell
“lazy” : values aren’t 

computed until they’re 
actually needed

“purely functional” : 
computing a value 

doesn’t have side effects



A toy example: Fibonacci

fib 0 = 0

fib 1 = 1

fib n = fib (n-1) + fib (n-2)

Load it into an 
interpreter

“Force” fib(10) to be 
evaluated… which forces 

fib(9) & fib(8)…



Running the toy example

fib 0 = 0

fib 1 = 1

fib n = fib (n-1) + fib (n-2)
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Thunk lifecycle

Allocation 
time

Entry 
time

Update 
time

Could start 
work on it 

here

We use its 
result here

GC

We know 
we’ll need it 

here



Thunk dependencies
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Potential parallelism
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Limit study
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Which thunks to select?

• Select based on thunk allocation site

• Binary spark / no-spark decision

• Threshold for needed/not-needed (3/4)

• Consider total work for allocation site



Simulation, select by alloc site
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Avoiding duplicate work

• By default GHC does not prevent 
concurrent evaluation of the same thunk

• But here the penalty is bad
– We’re selecting big thunks

– Independence of thunk evaluation is 
compromised

• We add a level of locking to avoid 
duplication



Avoiding speculation of unsafe I/O

• Dynamically detect attempts to perform 
unsafe I/O while speculating

• Upon detection suspend speculation of 
current thunk

• Defined using new I/O action which has no 
side effect in application thread but 
suspends under speculation
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Batcher’s Parallel Sorter



Parallelism in the sorter

two :: ([a] -> [b]) -> [a] -> [b]
two r = halve >-> toBoth r r >-> unhalve



Related work

• Parallel function programming [Hammond 94].

• Speculative evaluation in Multilisp [Osborne 90].

• par and seq [Roe 91].

• Parallel strategies [Trinder et. al. 98].

• Combining non-strictness with eager evaluation: 
Id90 and pH [Nikhil and Arvind 01].

• Fine grain concurrency: Monsson [Traub 91].

• Optimistic evaluation [Ennals and Peyton-Jones 03].

• GranSim [Loidl 98].



Future work

• Can we use a single program execution 
that avoids the need for a profile-collection 
phase?

• Impact of adjusting optimization level

• Use of feedback information to guide 
manual parallelization



Conclusions

• For selected programs an automatic 
speedup of 10-80% can be achieved

• Simulator can identify programs that are 
not amenable to automatic parallelization

• Not a silver bullet but does provide an 
interesting approach for parallelizing single 
application across 2, 3 or 4 cores


