Multi-core programming with
automatic parallelisation

Tim Harris and Satnam Singh
Microsoft Research Cambridge



Moore's law: the free lunch

Transistor count
1,000,000,000

Intel
Pentium 4

Intel
[tanium 2

Pentium

Intel
Pentium I

1,000,000
Intel 486
8086 Intel 386
4004
1,000
Q
A
O Q
Y o‘;" S
N kg o
~ 8 8
oN o
oN

Source: table from http://www.intel.com/technology/mooreslaw/index.htm



The free lunch is over

Transparent CPU Homogeneous Heterogeneous
perf increase multi-core multi-core




Using multi-cores: space scheduling

I|

I|

|

I|

I|

I|

I|

I|

I|

I|

e Partition resources
between concurrent
apps or VMs

« Machine
consolidation

* Preserve
responsiveness

* VMs for stronger
Isolation



Using multi-cores: control parallelism

|

|

I|

N

I|

|

I|

I|

I|

I|

I|

I|

I|

F

P
a

Ind control-
arallelism within an

PP

Multiple threads in a

S
o

nared address space
andle different

C

lents

GC, indexing, etc
concurrent with

d

pplication work



Using multi-cores: data parallelism

I|

I|

I|

I|

» Exploit data

parallelism in large
computations

* OpenMP
* Nested data-

parallelism



What about existing client code?

» Centred around interactions with a single
user...

— No easy parallelism through multiple clients
* Not written with parallelism in mind...

— No explicit threading for performance
— No calls onto parallel libraries



Implicit parallelism

for (inti=0;i<100; i++){_— Run each iteration in

MyFunction(i); parallel?
}

F3(x) in parallel?

F1(F2(x), F3(x)) ﬁ Evaluate F2(x) and




The key problems

» Getting the granularity right

for (inti=0;i<16; i++){
x[i]++;

}

» Keeping It transparent

for (inti=0;i<16; i++) {
total += x[i];

}



Overview

Haskell
Limit study: is there anything out there?

Making it more real: what does the
granularity look like?

Actual implementation: can we get a free
lunch after all?



Haskell

“lazy” : values aren’t
computed until they’re
actually needed

m
A

“purely functiona
computing a value
doesn’t have side effects

In .
L]




A toy example: Fibonacci

fib0=0
fib1 =1
fib n = fib (n-1) + fib (n-2)

Load it into an
interpreter

“Force” fib(10) to be
evaluated... which forces
fib(9) & fib(8)...




Running the toy example

“Thunk”
for “fib 10”

N\

Pointer to the

fi

> fi
fi

A the result
‘I, v

/
implementation A \3|yes for free
V P variables
// 0 ¢ LJ?/ 8
X~ . 5 8

Storage slot for

n 0=0

b1 =1

h n = fib (n-1) + fib (n-2)



Overview

Haskell
Limit study: is there anything out there?

Making it more real: what does the
granularity look like?

Actual implementation: can we get a free
lunch after all?



Thunk lifecycle

Could start We know .
) ) : We use its
work on it we’ll need it
result here
here here

Y N Vv



Thunk dependencies

a1lll‘

Allocation
dependencies
\:ﬁ Update

dependencies

Time




Potential parallelism

A

ﬁ

Time




Limit study

Thunk size
threshold (100,

1k, 10k... 10M

cycles)

Speedup
achieved

256 ——

128

64



Overview

Haskell
Limit study: is there anything out there?

Making it more real: what does the
granularity look like?

Actual implementation: can we get a free
lunch after all?



Which thunks to select?

Select based on thunk allocation site
Binary spark / no-spark decision
Threshold for needed/not-needed (3/4)
Consider total work for allocation site



te

Select all

thunks

Select all
100k+

site (100k, 250k,
500k, 1M)

Simulation, select by alloc s

| ; Predict by allocation




Overview

Haskell
Limit study: is there anything out there?

Making it more real: what does the
granularity look like?

Actual implementation: can we get a free
lunch after all?



Avoiding duplicate work

» By default GHC does not prevent
concurrent evaluation of the same thunk

* But here the penalty iIs bad

— We're selecting big thunks
— Independence of thunk evaluation is
compromised
» We add a level of locking to avoid
duplication



Avoiding speculation of unsafe 1/O

» Dynamically detect attempts to perform
unsafe I/O while speculating

» Upon detection suspend speculation of
current thunk

» Defined using new |/O action which has no
side effect in application thread but
suspends under speculation



Measured performance

M1

H#cores

M 2

W3

)

1.5




Avoiding slow-downs




Batcher’s Parallel Sorter



Parallelism in the sorter

two :: ([a] -> [b]) -> [a] -> [b]
two r = halve >-> toBoth r r >-> unhalve



Related work

Parallel function programming [Hammond 94].
Speculative evaluation in Multilisp [Osborne 90].
par and seqg [Roe 91].

Parallel strategies [Trinder et. al. 98].

Combining non-strictness with eager evaluation:
1d90 and pH [Nikhil and Arvind 01].

Fine grain concurrency: Monsson [Traub 91].
Optimistic evaluation [Ennals and Peyton-Jones 03].

GranSim [Loidl 98].



Future work

» Can we use a single program execution
that avoids the need for a profile-collection
ohase?

 Impact of adjusting optimization level

 Use of feedback information to guide
manual parallelization




Conclusions

 For selected programs an automatic
speedup of 10-80% can be achieved

« Simulator can identify programs that are
not amenable to automatic parallelization

* Not a silver bullet but does provide an
interesting approach for parallelizing single
application across 2, 3 or 4 cores



