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The dawn of computing

I In Bletchley (Turing, Flowers) in 1942, and in Germany (Zuse)
about the same time.

I “What hasformalism ever done for us?” (Mark Woodman,
Professor in (sic) Information Technology, Middlesex University,
2003).

I Computing is a collision between formalism (mathematical
logic) and calculation (arithmetic).

I Programs are utterly formal,completely meaninglesstexts.
I Programs are hard to write, but once written easy to compile and

to execute.
I Proofsare hard to write, but once written easy to check.
I Computing is everything you can do with formalism.
I Advances in computing are advances in formalism, and

vice-versa.
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Programming isreally hard: only nine lines,
no CAS, and youstill can’t understand it

var reading , latest : bit
slot : arraybit of bit
data : arraybit of arraybit of datatype

procedure write (item : datatype);
var pair , index : bit ;
begin

pair := not(reading);
index := not(slot[pair ]);
data[pair , index ] := item;
slot [pair ] := index ;
latest := pair

end;

procedure read : datatype;
var pair , index : bit ;
begin

pair := latest ;
reading := pair ;
index := slot [pair ];
read := data[pair , index ]

end;
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The dawn of high-level programming and compilers

I In Chicago in 1953 (Backus).

I Instead ofwriting programs, we were to write FORmulas which
the compiler would TRANslate into a program.

I John Reynolds thought this was magic: a computer writing a
program!

I Despite the inventors’ best intentions, programs gotbigger, not
better.

I (Programming is absolutely as hard as we dare make it, and
always will be.)

I (Concurrent programming programs aresmall: it’s no
coincidence.)
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The looming of concurrency

I (‘Looming’ is the light seen on the sea horizon when an island or
land mass is just about to come into view. That’s not in the
OAD!)

I Atlas interruptsstarted it; time-sharing continued it.

I It loomed in 1968, in Eindhoven, in the THE operating system
(Dijkstra et al.).

I “We have stipulated that processes should be connectedloosely;
by this we mean that apart from the (rare) moments of explicit
intercommunication, the individual processes themselves are to
be regarded as completelyindependentof each other.” (EWD)

I This isprogramming methodology, advice to the wise. It isnot
formal support.

I Concurrency became possible, using semaphores and critical
sections, but remained almost impossibly difficult.
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Looming a little closer

I Semaphores are hard to think about. Not every semaphore
program has critical sections.

I Hoare’sCCRs were impossible to implement but easy to
understand; Hoare / Brinch-Hansen’s monitors were easy to
implement and understand.

I Concurrency became straightforward, until the invention of Java.

I Milner’s CCS and Hoare’s CSP were attempts to re-engineer
concurrency in terms of message passing and identifiable
processes.

I They were both impossible to use. They both rumble on in PhD
theses, and will do so for ever.
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Closer still

I CSP led to occam, a programming language (May et al., 1982?),
and to Pascal-m, another programming language (Bornat &
Abramsky, 1982-ish).

I Message-passing concurrency is pretty easy, but you still get
deadlocks and have to read dumps.

I And, because of Hoare, you couldn’t use pointers.
I This was in the Golden Age of programming languages

(1958-85) when compilers found more than one error and syntax
didn’t make you ill. Then came the scourge of C and its bastard
child Java, and darkness fell. But even the Java Wolf shall not eat
the world for ever ...

I Steve Brookes has said sorry for failure semantics, and pointed
out that if you use asynchronous message-passing and
sort-of-infinite buffers, it all gets easier still. And I now know
how to fix Pascal-m.

7



Closer still

I CSP led to occam, a programming language (May et al., 1982?),
and to Pascal-m, another programming language (Bornat &
Abramsky, 1982-ish).

I Message-passing concurrency is pretty easy, but you still get
deadlocks and have to read dumps.

I And, becauseof Hoare, you couldn’t use pointers.
I This was in the Golden Age of programming languages

(1958-85) when compilers found more than one error and syntax
didn’t make you ill. Then came the scourge of C and its bastard
child Java, and darkness fell. But even the Java Wolf shall not eat
the world for ever ...

I Steve Brookes has said sorry for failure semantics, and pointed
out that if you use asynchronous message-passing and
sort-of-infinite buffers, it all gets easier still. And I now know
how to fix Pascal-m.

7



Closer still

I CSP led to occam, a programming language (May et al., 1982?),
and to Pascal-m, another programming language (Bornat &
Abramsky, 1982-ish).

I Message-passing concurrency is pretty easy, but you still get
deadlocks and have to read dumps.

I And, because of Hoare, you couldn’t use pointers.

I This was in the Golden Age of programming languages
(1958-85) when compilers found more than one error and syntax
didn’t make you ill. Then came the scourge of C and its bastard
child Java, and darkness fell. But even the Java Wolf shall not eat
the world for ever ...

I Steve Brookes has said sorry for failure semantics, and pointed
out that if you use asynchronous message-passing and
sort-of-infinite buffers, it all gets easier still. And I now know
how to fix Pascal-m.

7



Closer still

I CSP led to occam, a programming language (May et al., 1982?),
and to Pascal-m, another programming language (Bornat &
Abramsky, 1982-ish).

I Message-passing concurrency is pretty easy, but you still get
deadlocks and have to read dumps.

I And, because of Hoare, you couldn’t use pointers.
I This was in the Golden Age of programming languages

(1958-85) when compilers found more than one error and syntax
didn’t make you ill. Then came the scourge of C and its bastard
child Java, and darkness fell. But even the Java Wolf shall not eat
the world for ever ...

I Steve Brookes has said sorry for failure semantics, and pointed
out that if you use asynchronous message-passing and
sort-of-infinite buffers, it all gets easier still. And I now know
how to fix Pascal-m.

7



Closer still

I CSP led to occam, a programming language (May et al., 1982?),
and to Pascal-m, another programming language (Bornat &
Abramsky, 1982-ish).

I Message-passing concurrency is pretty easy, but you still get
deadlocks and have to read dumps.

I And, because of Hoare, you couldn’t use pointers.
I This was in the Golden Age of programming languages

(1958-85) when compilers found more than one error and syntax
didn’t make you ill. Then came the scourge of C and its bastard
child Java, and darkness fell. But even the Java Wolf shall not eat
the world for ever ...

I Steve Brookes has said sorry for failure semantics, and pointed
out that if you use asynchronous message-passing and
sort-of-infinite buffers, it all gets easier still. And I now know
how to fix Pascal-m.

7



The dawn of Structured Programming

I SoftwareEngineering was invented in 1968, and was an almost
immediate complete bloody disaster.

I In about 1974, Hoare and Dijkstra tried to repair the damage, by
inventing Structured Programming.

I Only use program constructs which we understand and you can
reason about: assignment (:=), sequence (;), condition
(if-then-else-fi), iteration (while-do-od) and procedure call.

I Do notuse goto; donotcommit aliasing.

I Implicitly, use high-level language.

I It was vehemently opposed, but slowly achieved total victory.
Nobody now writes in anything else. (Except in god-awful Java,
and unspeakable C++, and in C#, and ...)

I Structured Programming was a Bloody Good Idea, in stark
contrast to Software Engineering (UML, anybody?).
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After Structured Programming

I Programs got bigger. Of course!

I (Except forthe concurrent ones, of course.)
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The dawn of types

I Typescame to us via two routes:

I from Russell(type hierarchy, a solution to the paradox with
which he kneecapped poor Frege);

I from FORTRAN via Algol 60: INT means use the integer
accumulator; REAL means use that floating-point thingy instead.

I About 1972,in Burstall’s Hope, and a bit later, in Milner’s ML,
the routes converged. Typeinferencebecame possible.

I Hoare and others began to proseltyse types as a means of
avoiding mistakes. Another Bloody Good Idea.

I Types won when they reached C, because they helped people to
program more safely with C pointers and procedure calls (though
C syntax did its best to stop them).

I Bertrand Meyer (Eifell) thinks that OOP is based on the idea of
types. Would that it were so! (The road to Hell is paved with
good intentions.)
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An after-lunch fiasco

I In 1977,Hoare began a software engineering project.
I The idea was writesmallspecifications in classical logic oflarge

programs in a high-level language (not C),
I and then to prove that the program corresponded to its

specification.
I It was a fiasco. (Fiasco: sounds like fiesta. Fun, but still a fiasco.)

I The specifications were to be more precise than the English
which spawned them.

I They were more precise but also moreobscure, and very very
very veryveryhard to think up.

I Programs which used arrays were hard to deal with.
I Programs which involved loops were harder still.
I Pointers wereright out, and probably anathema.
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Don’t go swimming straight after lunch

I Or, when in a hole, stop digging. They didn’t.

I Theyinvented refinement, which iseven harderthan verification.

I They invented Z (Abrial & Sufrin), in an attempt to allow bozos
to specify things they couldn’t prove.

I Abrial ran away from Z, and made a tool called B – which works
– but there are only two people in the world who can use it.

I One of them is Abrial, and he used it to make the safety software
for the Paris Ḿetro Ligne 14 (driverless: have a go!).

I So: not a complete bloody disaster, but really quite a train wreck,
and highly entertaining if you weren’t on the train. I was.

I That train wreck haunts us still: half of you are here to laugh at
my idiocy in still trying to ride the rails.
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This evening

I All thosesuns – high-level languages, structured programming,
types – have passed their zenith and sunk below the horizon. It is
now dark.

I The concurrency-sun never even dawned. The formal proof
hoo-hah was all hoo-hah.

I In mid-afternoon, OOP started a forest fire, and nobody could
see anything in the smoke.

I In late afternoon, Java started burning. The smoke of its
god-awful stupid bloody concurrency mechanisms was so thick
that most people thought the types-sun had already gone down,
and nobody saw it set.

I Here we are around our campfire, telling stories and wondering
if the smoke will have gone before the dawn. You’re all pretty
demoralised.
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The morning

I I’m hereto tell you that the dawn of concurrency is at hand.

I At lastwe have a workable formal treatment of concurrency.
With its help, we’ll be able to see through the Java smoke to the
new land around us.

I This time, the hoo-hah is going to work for real.
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How to implement a binary tree

... andan alternative left subtree.
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How to replace L with L’?

p

left right

L
R

l

L'

What couldbe easier?

temp := p.left;
p.left := l;
disposetreetemp

(basic first-year undergrad stuff!)
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How to describe a tree (Reynolds)

Treescome apart, into threeseparatesections.

treeEmpty p =̂ p = nil ∧ emp
treeNode(λ, ρ) p =̂ ∃l, r · (p 7→ l, r ? treeλ l ? treeρ r)

(p 7→ l, r is a record,A ? B is heap separation)
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Separation logic

I E 7→ F is asingle-celled heap with addressE and contentF.

I E 7→ F0, F1 is a two-celled heap;E 7→ F0, F1, F2 is three cells;
and so on for four-, five-, ... celled heaps.

I E andF must be ‘pure’ expressions that don’t mention the heap
(don’t use7→).

I A ? B is separation of heaps;A∧ B, A∨ B,¬A, A → B,∀x · P(x),
∃x · P(x) are as normal.A∧ B expresses coincidence of heaps;
you don’t need to know aboutA−? B.

I E 7→ F0, F1 is just shorthand forE 7→ F0 ? E + 1 7→ F1.
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A modified Hoare logic

I {Q}C{R} is aresourcedandpartial correctnessassertion.C
will not go wrong (exceed its allocated resources) if started with
resourceQ, and will, if it terminates, deliver resourceR.

I The ‘small axioms’ of assignment are

{emp} x := new(){x 7→ }
{E 7→ } disposeE{emp}
{R[E/x]} x := E{R} (the Hoareaxiom)
{E 7→ F} x := [E] {x = F ∧ E 7→ F} (x not free inE, F)
{E 7→ } [E] := F {E 7→ F}
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Three inference rules

I Theframerule:
{Q}C{R}

{P ? Q}C{P ? R}
(modifies C

⋂
free P = {})

gap

I Theconcurrencyrule (hashorrid side-condition):

gap

{Q1}C1 {R1} {Q2}C2 {R2} . . . {Qn}Cn {Rn}
{Q1 ? Q2 ? · · · ? Qn}C1 || C2 || · · · || Cn {R1 ? R2 ? · · · ? Rn}

gap

I TheCCRrule (hasatrociousside condition):

gap

{(Q ? Ib) ∧ G}C{R? Ib}
{Q}with b when G do C od {R}
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Recent simplifications (not explained here)

I Permissions (fractionsof 7→, counts of�) to allow sharing of
heap;

I Variable permissions, to allow variables to be resource;

I Trivial side conditions;

I No side conditions at all (very new, this!).
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Data structures: a bit array and a wide data array

slot: 0 1

data:
wide

22



Nine lines are now ten,
with addedauxiliary proof-variables

write: with bundle when true do pair := not(reading);wuse := pair od;
index := not(slot[pair ]);
data[pair , index ] := item;
with bundle when true do slot [pair ] := index ;wuse := −1 od;
with bundle when true do latest := pair od

read: with bundle when true do pair := latest od;
with bundle when true do reading := pair od;
with bundle when true do index := slot [pair ]; ruse := index od;
read := data[pair , index ];
with bundle when true do ruse := −1 od

23



What the writer owns

(A point of notation: I’ve used a special form of7→ to describe a heap,
just to make the slides easy to read.

For example,data[pair , index ] 7→ replaces
data + 2 ? pair + index 7→ .

There is no change in meaning.)

latest0.5, slot0.5, data0.33,wuse0.5, pair , index

�

(
slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5
?

if wuse ≥ 0 then data[pair , index ] 7→ else emp fi

)
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What the reader owns

reading0.5, ruse0.5, data0.33, pair , index
� if ruse ≥ 0 then data[pair , index ] 7→ else emp fi

25



The bundle owns the rest

latest0.5, reading0.5, slot0.5, data0.33,wuse0.5, ruse0.5

� ∃s ·



slot [0] 7−−−→
0.5

s(0)? slot [1] 7−−−→
0.5

s(1)?
if wuse ≥ 0∧ ruse ≥ 0 then

data[reading , not(ruse)] 7→ ? data[wuse, s(wuse)] 7→
elsf wuse ≥ 0 then

data[wuse, s(wuse)] 7→ ?
data[not(wuse), s(not(wuse))] 7→ ? data[not(wuse), not(s(not(wuse)))] 7→

elsf ruse ≥ 0 then
data[reading , not(ruse)] 7→ ?
data[not(reading), s(not(reading))] 7→ ? data[not(reading), not(s(not(reading))] 7→ )

else
data 7→ , , ,

fi


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The writer

{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index � wuse = −1∧ slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5

}
with bundle when true do pair := not(reading);wuse := pair od;


latest0.5, slot0.5, data0.33,wuse0.5, pair , index

� wuse = pair ∧ ∃i ·
(

slot [pair ] 7−−−→
0.5

i ? slot [not(pair)] 7−−−→
0.5

?

data[pair , not(i)] 7→

) 

index := not(slot [pair ]);


latest0.5, slot0.5, data0.33,wuse0.5, pair , index

� wuse = pair ∧
(

slot [pair ] 7−−−→
0.5

not(index) ? slot [not(pair)] 7−−−→
0.5

?

data[pair , index ] 7→

) 

data[pair , index ] := item;


latest0.5, slot0.5, data0.33,wuse0.5, pair , index

� wuse = pair ∧
(

slot [pair ] 7−−−→
0.5

not(index) ? slot [not(pair)] 7−−−→
0.5

?

data[pair , index ] 7→ item

) 

with bundle when true do slot [pair ] := index ;wuse := −1 od;

{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index � wuse = −1∧ slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5

}

with bundle when true do latest := pair od{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index � wuse = −1∧ slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5

}
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Details of the first writer step

{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index � wuse = −1∧ slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5

}
with bundle when true do



latest , reading0.5, slot , data0.66,wuse,pair , index

� ∃s ·


wuse = −1∧ slot 7→ s(0),s(1)?
data[not(reading), s(not(reading))] 7→ ? data[not(reading), not(s(not(reading)))] 7→ ?
if ruse ≥ 0 then data[reading , not(ruse)] 7→

else data[reading , s(reading)] 7→ ? data[reading , not(s(reading))] 7→
fi





pair := not(reading);



latest , reading0.5, slot , data0.66,wuse,pair , index

� ∃s ·


wuse = −1∧ pair = not(reading) ∧ slot 7→ s(0),s(1)?
data[not(reading), s(not(reading))] 7→ ? data[not(reading), not(s(not(reading)))] 7→ ?
if ruse ≥ 0 then data[reading , not(ruse)] 7→

else data[reading , s(reading)] 7→ ? data[reading , not(s(reading))] 7→
fi





wuse := pair



latest , reading0.5, slot , data0.66,wuse,pair , index

� ∃s ·


wuse = pair ∧ pair = not(reading) ∧ slot 7→ s(0),s(1)?
data[not(reading), s(not(reading))] 7→ ? data[not(reading), not(s(not(reading)))] 7→ ?
if ruse ≥ 0 then data[reading , not(ruse)] 7→

else data[reading , s(reading)] 7→ ? data[reading , not(s(reading))] 7→
fi





od;{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index

� wuse = pair ∧ ∃i ·
(

slot [pair ] 7−−−→
0.5

i ? slot [not(pair)] 7−−−→
0.5

? data[pair , not(i)] 7→
) }
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Details of the first writer step
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{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index � wuse = −1∧ slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5

}
with bundle when true do

latest , reading0.5, slot , data0.66,wuse,pair , index

� ∃s ·


wuse = −1∧ slot 7→ s(0),s(1)?
data[not(reading), s(not(reading))] 7→ ? data[not(reading), not(s(not(reading)))] 7→ ?
if ruse ≥ 0 then data[reading , not(ruse)] 7→

else data[reading , s(reading)] 7→ ? data[reading , not(s(reading))] 7→
fi
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latest0.5, slot0.5, data0.33,wuse0.5, pair , index

� wuse = pair ∧ ∃i ·
(

slot [pair ] 7−−−→
0.5

i ? slot [not(pair)] 7−−−→
0.5

? data[pair , not(i)] 7→
) }
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Details of the first writer step
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The reader is even easier than the writer!

{
reading0.5, ruse0.5, data0.33, pair , index � ruse = −1

}
with bundle when true do pair := latest od;

{
reading0.5, ruse0.5, data0.33, pair , index � ruse = −1

}

with bundle when true do reading := pair od;

{
reading0.5, ruse0.5, data0.33, pair , index � ruse = −1∧ reading = pair

}

with bundle when true do index := slot [pair ]; ruse := index od;

{
reading0.5, ruse0.5, data0.33, pair , index � ruse ≥ 0∧ reading = pair ∧ data[pair , index ] 7→

}

read := data[pair , index ];

{
reading0.5, ruse0.5, data0.33, pair , index

� ruse ≥ 0∧ reading = pair ∧ ∃i · data[pair , index ] 7→ i ∧ read = i

}

with bundle when true do ruse := −1 od{
reading0.5, ruse0.5, data0.33, pair , index � ruse = −1

}
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The rest of the reader is too easy to bother with

with bundle when true do index := slot [pair ]; ruse := index
(in the reader) is very veryverysimilar to

with bundle when true do pair := not(reading);wuse := pair od
(which I just showed you in detail from the writer),

so you don’t need to see it.

And therest of the reader is trivial.
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Nice ProofsTM

I Are proofswhich you can read, understand and believe.

I Proofs which don’t fit on one slide are unbelievable.

I Previous proofs of Simpson’s 4-slot are Henderson
(rely-guarantee, about 20 pages), Burton (refinement of
atomicity, about 25 pages) and Burton’s thesis (somehow, about
99 pages).

I I ain’t reading no 99-page proof.

I My proofs fit on a slide with a bit of scaleboxing. You can read
them. Given a day or so, you can understand them.

I For thevery first timewe have nice proofs of a nine-line
algorithm.

I I hope it has been worth the wait.
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Summary

I O’Hearn andReynolds invented separation logic to deal with
lists and trees.

I I made it deal with graphs, by brute force and ignorance.

I O’Hearn showed me how to pass pointers in messages.

I By brute force, I made them all take notice of permissions.

I Similarly, I made them take notice that variables are resource
too.

I I did some proofs of some hoary old concurrency favourites.

I Matthew Parkinson, then Matthew Parkinson and I, did proofs of
some old concurrency puzzlers.
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