
Why Separation Logic is the Bee’s Knees, and why
you should care

Richard Bornat
School of Computing, Middlesex University

8th December 2005 (version 3.0)

1

The dawn of computing

I In Bletchley (Turing, Flowers) in 1942, and in Germany (Zuse)
about the same time.

I “What hasformalism ever done for us?” (Mark Woodman,
Professor in (sic) Information Technology, Middlesex University,
2003).

I Computing is a collision between formalism (mathematical
logic) and calculation (arithmetic).

I Programs are utterly formal,completely meaninglesstexts.
I Programs are hard to write, but once written easy to compile and

to execute.
I Proofsare hard to write, but once written easy to check.
I Computing is everything you can do with formalism.
I Advances in computing are advances in formalism, and

vice-versa.

2

The dawn of computing

I In Bletchley (Turing, Flowers) in 1942, and in Germany (Zuse)
about the same time.

I “What has formalism ever done for us?” (Mark Woodman,
Professor in (sic) Information Technology, Middlesex University,
2003).

I Computing isa collision between formalism (mathematical
logic) and calculation (arithmetic).

I Programs are utterly formal,completely meaninglesstexts.
I Programs are hard to write, but once written easy to compile and

to execute.
I Proofsare hard to write, but once written easy to check.
I Computing is everything you can do with formalism.
I Advances in computing are advances in formalism, and

vice-versa.

2

The dawn of computing

I In Bletchley (Turing, Flowers) in 1942, and in Germany (Zuse)
about the same time.

I “What has formalism ever done for us?” (Mark Woodman,
Professor in (sic) Information Technology, Middlesex University,
2003).

I Computing is a collision between formalism (mathematical
logic) and calculation (arithmetic).

I Programs areutterly formal,completely meaninglesstexts.
I Programs are hard to write, but once written easy to compile and

to execute.
I Proofsare hard to write, but once written easy to check.
I Computing is everything you can do with formalism.
I Advances in computing are advances in formalism, and

vice-versa.

2

The dawn of computing

I In Bletchley (Turing, Flowers) in 1942, and in Germany (Zuse)
about the same time.

I “What has formalism ever done for us?” (Mark Woodman,
Professor in (sic) Information Technology, Middlesex University,
2003).

I Computing is a collision between formalism (mathematical
logic) and calculation (arithmetic).

I Programs are utterly formal,completely meaninglesstexts.

I Programs arehard to write, but once written easy to compile and
to execute.

I Proofsare hard to write, but once written easy to check.
I Computing is everything you can do with formalism.
I Advances in computing are advances in formalism, and

vice-versa.

2

The dawn of computing

I In Bletchley (Turing, Flowers) in 1942, and in Germany (Zuse)
about the same time.

I “What has formalism ever done for us?” (Mark Woodman,
Professor in (sic) Information Technology, Middlesex University,
2003).

I Computing is a collision between formalism (mathematical
logic) and calculation (arithmetic).

I Programs are utterly formal,completely meaninglesstexts.
I Programs are hard to write, but once written easy to compile and

to execute.

I Proofsare hardto write, but once written easy to check.
I Computing is everything you can do with formalism.
I Advances in computing are advances in formalism, and

vice-versa.

2

The dawn of computing

I In Bletchley (Turing, Flowers) in 1942, and in Germany (Zuse)
about the same time.

I “What has formalism ever done for us?” (Mark Woodman,
Professor in (sic) Information Technology, Middlesex University,
2003).

I Computing is a collision between formalism (mathematical
logic) and calculation (arithmetic).

I Programs are utterly formal,completely meaninglesstexts.
I Programs are hard to write, but once written easy to compile and

to execute.
I Proofsare hard to write, but once written easy to check.

I Computing iseverything you can do with formalism.
I Advances in computing are advances in formalism, and

vice-versa.

2

The dawn of computing

I In Bletchley (Turing, Flowers) in 1942, and in Germany (Zuse)
about the same time.

I “What has formalism ever done for us?” (Mark Woodman,
Professor in (sic) Information Technology, Middlesex University,
2003).

I Computing is a collision between formalism (mathematical
logic) and calculation (arithmetic).

I Programs are utterly formal,completely meaninglesstexts.
I Programs are hard to write, but once written easy to compile and

to execute.
I Proofsare hard to write, but once written easy to check.
I Computing is everything you can do with formalism.

I Advancesin computing are advances in formalism, and
vice-versa.

2

The dawn of computing

I In Bletchley (Turing, Flowers) in 1942, and in Germany (Zuse)
about the same time.

I “What has formalism ever done for us?” (Mark Woodman,
Professor in (sic) Information Technology, Middlesex University,
2003).

I Computing is a collision between formalism (mathematical
logic) and calculation (arithmetic).

I Programs are utterly formal,completely meaninglesstexts.
I Programs are hard to write, but once written easy to compile and

to execute.
I Proofsare hard to write, but once written easy to check.
I Computing is everything you can do with formalism.
I Advances in computing are advances in formalism, and

vice-versa.
2

Programming isreally hard: only nine lines,
no CAS, and youstill can’t understand it

var reading , latest : bit
slot : arraybit of bit
data : arraybit of arraybit of datatype

procedure write (item : datatype);
var pair , index : bit ;
begin

pair := not(reading);
index := not(slot[pair]);
data[pair , index] := item;
slot [pair] := index ;
latest := pair

end;

procedure read : datatype;
var pair , index : bit ;
begin

pair := latest ;
reading := pair ;
index := slot [pair];
read := data[pair , index]

end;

3

Programming isreally hard: only nine lines,
no CAS, and youstill can’t understand it

var reading , latest : bit
slot : arraybit of bit
data : arraybit of arraybit of datatype

procedure write (item : datatype);
var pair , index : bit ;
begin

pair := not(reading);
index := not(slot[pair]);
data[pair , index] := item;
slot [pair] := index ;
latest := pair

end;

procedure read : datatype;
var pair , index : bit ;
begin

pair := latest ;
reading := pair ;
index := slot [pair];
read := data[pair , index]

end;
3

The dawn of high-level programming and compilers

I In Chicago in 1953 (Backus).

I Instead ofwriting programs, we were to write FORmulas which
the compiler would TRANslate into a program.

I John Reynolds thought this was magic: a computer writing a
program!

I Despite the inventors’ best intentions, programs gotbigger, not
better.

I (Programming is absolutely as hard as we dare make it, and
always will be.)

I (Concurrent programming programs aresmall: it’s no
coincidence.)

4

The dawn of high-level programming and compilers

I In Chicago in 1953 (Backus).

I Instead of writing programs, we were to write FORmulas which
the compiler would TRANslate into a program.

I John Reynolds thought this was magic: a computer writing a
program!

I Despite the inventors’ best intentions, programs gotbigger, not
better.

I (Programming is absolutely as hard as we dare make it, and
always will be.)

I (Concurrent programming programs aresmall: it’s no
coincidence.)

4

The dawn of high-level programming and compilers

I In Chicago in 1953 (Backus).

I Instead of writing programs, we were to write FORmulas which
the compiler would TRANslate into a program.

I John Reynolds thought this was magic: a computer writing a
program!

I Despite theinventors’ best intentions, programs gotbigger, not
better.

I (Programming is absolutely as hard as we dare make it, and
always will be.)

I (Concurrent programming programs aresmall: it’s no
coincidence.)

4

The dawn of high-level programming and compilers

I In Chicago in 1953 (Backus).

I Instead of writing programs, we were to write FORmulas which
the compiler would TRANslate into a program.

I John Reynolds thought this was magic: a computer writing a
program!

I Despite the inventors’ best intentions, programs gotbigger, not
better.

I (Programming isabsolutely as hard as we dare make it, and
always will be.)

I (Concurrent programming programs aresmall: it’s no
coincidence.)

4

The dawn of high-level programming and compilers

I In Chicago in 1953 (Backus).

I Instead of writing programs, we were to write FORmulas which
the compiler would TRANslate into a program.

I John Reynolds thought this was magic: a computer writing a
program!

I Despite the inventors’ best intentions, programs gotbigger, not
better.

I (Programming is absolutely as hard as we dare make it, and
always will be.)

I (Concurrent programmingprograms aresmall: it’s no
coincidence.)

4

The dawn of high-level programming and compilers

I In Chicago in 1953 (Backus).

I Instead of writing programs, we were to write FORmulas which
the compiler would TRANslate into a program.

I John Reynolds thought this was magic: a computer writing a
program!

I Despite the inventors’ best intentions, programs gotbigger, not
better.

I (Programming is absolutely as hard as we dare make it, and
always will be.)

I (Concurrent programming programs aresmall: it’s no
coincidence.)

4

The looming of concurrency

I (‘Looming’ is the light seen on the sea horizon when an island or
land mass is just about to come into view. That’s not in the
OAD!)

I Atlas interruptsstarted it; time-sharing continued it.

I It loomed in 1968, in Eindhoven, in the THE operating system
(Dijkstra et al.).

I “We have stipulated that processes should be connectedloosely;
by this we mean that apart from the (rare) moments of explicit
intercommunication, the individual processes themselves are to
be regarded as completelyindependentof each other.” (EWD)

I This isprogramming methodology, advice to the wise. It isnot
formal support.

I Concurrency became possible, using semaphores and critical
sections, but remained almost impossibly difficult.

5

The looming of concurrency

I (‘Looming’ is the light seen on the sea horizon when an island or
land mass is just about to come into view. That’s not in the
OAD!)

I Atlas interrupts started it; time-sharing continued it.

I It loomedin 1968, in Eindhoven, in the THE operating system
(Dijkstra et al.).

I “We have stipulated that processes should be connectedloosely;
by this we mean that apart from the (rare) moments of explicit
intercommunication, the individual processes themselves are to
be regarded as completelyindependentof each other.” (EWD)

I This isprogramming methodology, advice to the wise. It isnot
formal support.

I Concurrency became possible, using semaphores and critical
sections, but remained almost impossibly difficult.

5

The looming of concurrency

I (‘Looming’ is the light seen on the sea horizon when an island or
land mass is just about to come into view. That’s not in the
OAD!)

I Atlas interrupts started it; time-sharing continued it.

I It loomed in 1968, in Eindhoven, in the THE operating system
(Dijkstra et al.).

I “Wehave stipulated that processes should be connectedloosely;
by this we mean that apart from the (rare) moments of explicit
intercommunication, the individual processes themselves are to
be regarded as completelyindependentof each other.” (EWD)

I This isprogramming methodology, advice to the wise. It isnot
formal support.

I Concurrency became possible, using semaphores and critical
sections, but remained almost impossibly difficult.

5

The looming of concurrency

I (‘Looming’ is the light seen on the sea horizon when an island or
land mass is just about to come into view. That’s not in the
OAD!)

I Atlas interrupts started it; time-sharing continued it.

I It loomed in 1968, in Eindhoven, in the THE operating system
(Dijkstra et al.).

I “We have stipulated that processes should be connectedloosely;
by this we mean that apart from the (rare) moments of explicit
intercommunication, the individual processes themselves are to
be regarded as completelyindependentof each other.” (EWD)

I This isprogramming methodology, advice to the wise. It isnot
formal support.

I Concurrency became possible, using semaphores and critical
sections, but remained almost impossibly difficult.

5

The looming of concurrency

I (‘Looming’ is the light seen on the sea horizon when an island or
land mass is just about to come into view. That’s not in the
OAD!)

I Atlas interrupts started it; time-sharing continued it.

I It loomed in 1968, in Eindhoven, in the THE operating system
(Dijkstra et al.).

I “We have stipulated that processes should be connectedloosely;
by this we mean that apart from the (rare) moments of explicit
intercommunication, the individual processes themselves are to
be regarded as completelyindependentof each other.” (EWD)

I This isprogramming methodology, advice to the wise. It isnot
formal support.

I Concurrencybecame possible, using semaphores and critical
sections, but remained almost impossibly difficult.

5

The looming of concurrency

I (‘Looming’ is the light seen on the sea horizon when an island or
land mass is just about to come into view. That’s not in the
OAD!)

I Atlas interrupts started it; time-sharing continued it.

I It loomed in 1968, in Eindhoven, in the THE operating system
(Dijkstra et al.).

I “We have stipulated that processes should be connectedloosely;
by this we mean that apart from the (rare) moments of explicit
intercommunication, the individual processes themselves are to
be regarded as completelyindependentof each other.” (EWD)

I This isprogramming methodology, advice to the wise. It isnot
formal support.

I Concurrency became possible, using semaphores and critical
sections, but remained almost impossibly difficult.

5

Looming a little closer

I Semaphores are hard to think about. Not every semaphore
program has critical sections.

I Hoare’sCCRs were impossible to implement but easy to
understand; Hoare / Brinch-Hansen’s monitors were easy to
implement and understand.

I Concurrency became straightforward, until the invention of Java.

I Milner’s CCS and Hoare’s CSP were attempts to re-engineer
concurrency in terms of message passing and identifiable
processes.

I They were both impossible to use. They both rumble on in PhD
theses, and will do so for ever.

6

Looming a little closer

I Semaphores are hard to think about. Not every semaphore
program has critical sections.

I Hoare’s CCRs were impossible to implement but easy to
understand; Hoare / Brinch-Hansen’s monitors were easy to
implement and understand.

I Concurrencybecame straightforward, until the invention of Java.

I Milner’s CCS and Hoare’s CSP were attempts to re-engineer
concurrency in terms of message passing and identifiable
processes.

I They were both impossible to use. They both rumble on in PhD
theses, and will do so for ever.

6

Looming a little closer

I Semaphores are hard to think about. Not every semaphore
program has critical sections.

I Hoare’s CCRs were impossible to implement but easy to
understand; Hoare / Brinch-Hansen’s monitors were easy to
implement and understand.

I Concurrency became straightforward, until the invention of Java.

I Milner’s CCS and Hoare’s CSP were attempts to re-engineer
concurrency in terms of message passing and identifiable
processes.

I They were both impossible to use. They both rumble on in PhD
theses, and will do so for ever.

6

Looming a little closer

I Semaphores are hard to think about. Not every semaphore
program has critical sections.

I Hoare’s CCRs were impossible to implement but easy to
understand; Hoare / Brinch-Hansen’s monitors were easy to
implement and understand.

I Concurrency became straightforward, until the invention of Java.

I Milner’s CCS and Hoare’s CSP were attempts to re-engineer
concurrency in terms of message passing and identifiable
processes.

I Theywere both impossible to use. They both rumble on in PhD
theses, and will do so for ever.

6

Looming a little closer

I Semaphores are hard to think about. Not every semaphore
program has critical sections.

I Hoare’s CCRs were impossible to implement but easy to
understand; Hoare / Brinch-Hansen’s monitors were easy to
implement and understand.

I Concurrency became straightforward, until the invention of Java.

I Milner’s CCS and Hoare’s CSP were attempts to re-engineer
concurrency in terms of message passing and identifiable
processes.

I They were both impossible to use. They both rumble on in PhD
theses, and will do so for ever.

6

Closer still

I CSP led to occam, a programming language (May et al., 1982?),
and to Pascal-m, another programming language (Bornat &
Abramsky, 1982-ish).

I Message-passing concurrency is pretty easy, but you still get
deadlocks and have to read dumps.

I And, because of Hoare, you couldn’t use pointers.
I This was in the Golden Age of programming languages

(1958-85) when compilers found more than one error and syntax
didn’t make you ill. Then came the scourge of C and its bastard
child Java, and darkness fell. But even the Java Wolf shall not eat
the world for ever ...

I Steve Brookes has said sorry for failure semantics, and pointed
out that if you use asynchronous message-passing and
sort-of-infinite buffers, it all gets easier still. And I now know
how to fix Pascal-m.

7

Closer still

I CSP led to occam, a programming language (May et al., 1982?),
and to Pascal-m, another programming language (Bornat &
Abramsky, 1982-ish).

I Message-passing concurrency is pretty easy, but you still get
deadlocks and have to read dumps.

I And, becauseof Hoare, you couldn’t use pointers.
I This was in the Golden Age of programming languages

(1958-85) when compilers found more than one error and syntax
didn’t make you ill. Then came the scourge of C and its bastard
child Java, and darkness fell. But even the Java Wolf shall not eat
the world for ever ...

I Steve Brookes has said sorry for failure semantics, and pointed
out that if you use asynchronous message-passing and
sort-of-infinite buffers, it all gets easier still. And I now know
how to fix Pascal-m.

7

Closer still

I CSP led to occam, a programming language (May et al., 1982?),
and to Pascal-m, another programming language (Bornat &
Abramsky, 1982-ish).

I Message-passing concurrency is pretty easy, but you still get
deadlocks and have to read dumps.

I And, because of Hoare, you couldn’t use pointers.

I This was in the Golden Age of programming languages
(1958-85) when compilers found more than one error and syntax
didn’t make you ill. Then came the scourge of C and its bastard
child Java, and darkness fell. But even the Java Wolf shall not eat
the world for ever ...

I Steve Brookes has said sorry for failure semantics, and pointed
out that if you use asynchronous message-passing and
sort-of-infinite buffers, it all gets easier still. And I now know
how to fix Pascal-m.

7

Closer still

I CSP led to occam, a programming language (May et al., 1982?),
and to Pascal-m, another programming language (Bornat &
Abramsky, 1982-ish).

I Message-passing concurrency is pretty easy, but you still get
deadlocks and have to read dumps.

I And, because of Hoare, you couldn’t use pointers.
I This was in the Golden Age of programming languages

(1958-85) when compilers found more than one error and syntax
didn’t make you ill. Then came the scourge of C and its bastard
child Java, and darkness fell. But even the Java Wolf shall not eat
the world for ever ...

I Steve Brookes has said sorry for failure semantics, and pointed
out that if you use asynchronous message-passing and
sort-of-infinite buffers, it all gets easier still. And I now know
how to fix Pascal-m.

7

Closer still

I CSP led to occam, a programming language (May et al., 1982?),
and to Pascal-m, another programming language (Bornat &
Abramsky, 1982-ish).

I Message-passing concurrency is pretty easy, but you still get
deadlocks and have to read dumps.

I And, because of Hoare, you couldn’t use pointers.
I This was in the Golden Age of programming languages

(1958-85) when compilers found more than one error and syntax
didn’t make you ill. Then came the scourge of C and its bastard
child Java, and darkness fell. But even the Java Wolf shall not eat
the world for ever ...

I Steve Brookes has said sorry for failure semantics, and pointed
out that if you use asynchronous message-passing and
sort-of-infinite buffers, it all gets easier still. And I now know
how to fix Pascal-m.

7

The dawn of Structured Programming

I SoftwareEngineering was invented in 1968, and was an almost
immediate complete bloody disaster.

I In about 1974, Hoare and Dijkstra tried to repair the damage, by
inventing Structured Programming.

I Only use program constructs which we understand and you can
reason about: assignment (:=), sequence (;), condition
(if-then-else-fi), iteration (while-do-od) and procedure call.

I Do notuse goto; donotcommit aliasing.

I Implicitly, use high-level language.

I It was vehemently opposed, but slowly achieved total victory.
Nobody now writes in anything else. (Except in god-awful Java,
and unspeakable C++, and in C#, and ...)

I Structured Programming was a Bloody Good Idea, in stark
contrast to Software Engineering (UML, anybody?).

8

The dawn of Structured Programming

I Software Engineering was invented in 1968, and was an almost
immediate complete bloody disaster.

I In about1974, Hoare and Dijkstra tried to repair the damage, by
inventing Structured Programming.

I Only use program constructs which we understand and you can
reason about: assignment (:=), sequence (;), condition
(if-then-else-fi), iteration (while-do-od) and procedure call.

I Do notuse goto; donotcommit aliasing.

I Implicitly, use high-level language.

I It was vehemently opposed, but slowly achieved total victory.
Nobody now writes in anything else. (Except in god-awful Java,
and unspeakable C++, and in C#, and ...)

I Structured Programming was a Bloody Good Idea, in stark
contrast to Software Engineering (UML, anybody?).

8

The dawn of Structured Programming

I Software Engineering was invented in 1968, and was an almost
immediate complete bloody disaster.

I In about 1974, Hoare and Dijkstra tried to repair the damage, by
inventing Structured Programming.

I Only useprogram constructs which we understand and you can
reason about: assignment (:=), sequence (;), condition
(if-then-else-fi), iteration (while-do-od) and procedure call.

I Do notuse goto; donotcommit aliasing.

I Implicitly, use high-level language.

I It was vehemently opposed, but slowly achieved total victory.
Nobody now writes in anything else. (Except in god-awful Java,
and unspeakable C++, and in C#, and ...)

I Structured Programming was a Bloody Good Idea, in stark
contrast to Software Engineering (UML, anybody?).

8

The dawn of Structured Programming

I Software Engineering was invented in 1968, and was an almost
immediate complete bloody disaster.

I In about 1974, Hoare and Dijkstra tried to repair the damage, by
inventing Structured Programming.

I Only use program constructs which we understand and you can
reason about: assignment (:=), sequence (;), condition
(if-then-else-fi), iteration (while-do-od) and procedure call.

I Do notuse goto;donotcommit aliasing.

I Implicitly, use high-level language.

I It was vehemently opposed, but slowly achieved total victory.
Nobody now writes in anything else. (Except in god-awful Java,
and unspeakable C++, and in C#, and ...)

I Structured Programming was a Bloody Good Idea, in stark
contrast to Software Engineering (UML, anybody?).

8

The dawn of Structured Programming

I Software Engineering was invented in 1968, and was an almost
immediate complete bloody disaster.

I In about 1974, Hoare and Dijkstra tried to repair the damage, by
inventing Structured Programming.

I Only use program constructs which we understand and you can
reason about: assignment (:=), sequence (;), condition
(if-then-else-fi), iteration (while-do-od) and procedure call.

I Do notuse goto; donotcommit aliasing.

I Implicitly, use high-level language.

I It was vehemently opposed, but slowly achieved total victory.
Nobody now writes in anything else. (Except in god-awful Java,
and unspeakable C++, and in C#, and ...)

I Structured Programming was a Bloody Good Idea, in stark
contrast to Software Engineering (UML, anybody?).

8

The dawn of Structured Programming

I Software Engineering was invented in 1968, and was an almost
immediate complete bloody disaster.

I In about 1974, Hoare and Dijkstra tried to repair the damage, by
inventing Structured Programming.

I Only use program constructs which we understand and you can
reason about: assignment (:=), sequence (;), condition
(if-then-else-fi), iteration (while-do-od) and procedure call.

I Do notuse goto; donotcommit aliasing.

I Implicitly, use high-level language.

I It was vehemently opposed, but slowly achieved total victory.
Nobody now writes in anything else. (Except in god-awful Java,
and unspeakable C++, and in C#, and ...)

I Structured Programming was a Bloody Good Idea, in stark
contrast to Software Engineering (UML, anybody?).

8

The dawn of Structured Programming

I Software Engineering was invented in 1968, and was an almost
immediate complete bloody disaster.

I In about 1974, Hoare and Dijkstra tried to repair the damage, by
inventing Structured Programming.

I Only use program constructs which we understand and you can
reason about: assignment (:=), sequence (;), condition
(if-then-else-fi), iteration (while-do-od) and procedure call.

I Do notuse goto; donotcommit aliasing.

I Implicitly, use high-level language.

I It was vehemently opposed, but slowly achieved total victory.
Nobody now writes in anything else. (Except in god-awful Java,
and unspeakable C++, and in C#, and ...)

I Structured Programmingwas a Bloody Good Idea, in stark
contrast to Software Engineering (UML, anybody?).

8

The dawn of Structured Programming

I Software Engineering was invented in 1968, and was an almost
immediate complete bloody disaster.

I In about 1974, Hoare and Dijkstra tried to repair the damage, by
inventing Structured Programming.

I Only use program constructs which we understand and you can
reason about: assignment (:=), sequence (;), condition
(if-then-else-fi), iteration (while-do-od) and procedure call.

I Do notuse goto; donotcommit aliasing.

I Implicitly, use high-level language.

I It was vehemently opposed, but slowly achieved total victory.
Nobody now writes in anything else. (Except in god-awful Java,
and unspeakable C++, and in C#, and ...)

I Structured Programming was a Bloody Good Idea, in stark
contrast to Software Engineering (UML, anybody?).

8

After Structured Programming

I Programs got bigger. Of course!

I (Except forthe concurrent ones, of course.)

9

After Structured Programming

I Programs got bigger. Of course!

I (Except for the concurrent ones, of course.)

9

The dawn of types

I Typescame to us via two routes:

I from Russell(type hierarchy, a solution to the paradox with
which he kneecapped poor Frege);

I from FORTRAN via Algol 60: INT means use the integer
accumulator; REAL means use that floating-point thingy instead.

I About 1972,in Burstall’s Hope, and a bit later, in Milner’s ML,
the routes converged. Typeinferencebecame possible.

I Hoare and others began to proseltyse types as a means of
avoiding mistakes. Another Bloody Good Idea.

I Types won when they reached C, because they helped people to
program more safely with C pointers and procedure calls (though
C syntax did its best to stop them).

I Bertrand Meyer (Eifell) thinks that OOP is based on the idea of
types. Would that it were so! (The road to Hell is paved with
good intentions.)

10

The dawn of types

I Types came to us via two routes:

I from Russell(type hierarchy, a solution to the paradox with
which he kneecapped poor Frege);

I from FORTRAN via Algol 60: INT means use the integer
accumulator; REAL means use that floating-point thingy instead.

I About 1972, in Burstall’s Hope, and a bit later, in Milner’s ML,
the routes converged. Typeinferencebecame possible.

I Hoare and others began to proseltyse types as a means of
avoiding mistakes. Another Bloody Good Idea.

I Types won when they reached C, because they helped people to
program more safely with C pointers and procedure calls (though
C syntax did its best to stop them).

I Bertrand Meyer (Eifell) thinks that OOP is based on the idea of
types. Would that it were so! (The road to Hell is paved with
good intentions.)

10

The dawn of types

I Types came to us via two routes:
I from Russell (type hierarchy, a solution to the paradox with

which he kneecapped poor Frege);

I from FORTRAN via Algol 60: INT means use the integer
accumulator; REAL means use that floating-point thingy instead.

I About 1972, in Burstall’s Hope, and a bit later, in Milner’s ML,
the routes converged. Typeinferencebecame possible.

I Hoare and others began to proseltyse types as a means of
avoiding mistakes. Another Bloody Good Idea.

I Types won when they reached C, because they helped people to
program more safely with C pointers and procedure calls (though
C syntax did its best to stop them).

I Bertrand Meyer (Eifell) thinks that OOP is based on the idea of
types. Would that it were so! (The road to Hell is paved with
good intentions.)

10

The dawn of types

I Types came to us via two routes:
I from Russell (type hierarchy, a solution to the paradox with

which he kneecapped poor Frege);
I from FORTRAN via Algol 60: INT means use the integer

accumulator; REAL means use that floating-point thingy instead.

I About 1972,in Burstall’s Hope, and a bit later, in Milner’s ML,
the routes converged. Typeinferencebecame possible.

I Hoare and others began to proseltyse types as a means of
avoiding mistakes. Another Bloody Good Idea.

I Types won when they reached C, because they helped people to
program more safely with C pointers and procedure calls (though
C syntax did its best to stop them).

I Bertrand Meyer (Eifell) thinks that OOP is based on the idea of
types. Would that it were so! (The road to Hell is paved with
good intentions.)

10

The dawn of types

I Types came to us via two routes:
I from Russell (type hierarchy, a solution to the paradox with

which he kneecapped poor Frege);
I from FORTRAN via Algol 60: INT means use the integer

accumulator; REAL means use that floating-point thingy instead.

I About 1972, in Burstall’s Hope, and a bit later, in Milner’s ML,
the routes converged. Typeinferencebecame possible.

I Hoare andothers began to proseltyse types as a means of
avoiding mistakes. Another Bloody Good Idea.

I Types won when they reached C, because they helped people to
program more safely with C pointers and procedure calls (though
C syntax did its best to stop them).

I Bertrand Meyer (Eifell) thinks that OOP is based on the idea of
types. Would that it were so! (The road to Hell is paved with
good intentions.)

10

The dawn of types

I Types came to us via two routes:
I from Russell (type hierarchy, a solution to the paradox with

which he kneecapped poor Frege);
I from FORTRAN via Algol 60: INT means use the integer

accumulator; REAL means use that floating-point thingy instead.

I About 1972, in Burstall’s Hope, and a bit later, in Milner’s ML,
the routes converged. Typeinferencebecame possible.

I Hoare and others began to proseltyse types as a means of
avoiding mistakes. Another Bloody Good Idea.

I Typeswon when they reached C, because they helped people to
program more safely with C pointers and procedure calls (though
C syntax did its best to stop them).

I Bertrand Meyer (Eifell) thinks that OOP is based on the idea of
types. Would that it were so! (The road to Hell is paved with
good intentions.)

10

The dawn of types

I Types came to us via two routes:
I from Russell (type hierarchy, a solution to the paradox with

which he kneecapped poor Frege);
I from FORTRAN via Algol 60: INT means use the integer

accumulator; REAL means use that floating-point thingy instead.

I About 1972, in Burstall’s Hope, and a bit later, in Milner’s ML,
the routes converged. Typeinferencebecame possible.

I Hoare and others began to proseltyse types as a means of
avoiding mistakes. Another Bloody Good Idea.

I Types won when they reached C, because they helped people to
program more safely with C pointers and procedure calls (though
C syntax did its best to stop them).

I Bertrand Meyer (Eifell) thinks that OOP is based on the idea of
types. Would that it were so! (The road to Hell is paved with
good intentions.)

10

The dawn of types

I Types came to us via two routes:
I from Russell (type hierarchy, a solution to the paradox with

which he kneecapped poor Frege);
I from FORTRAN via Algol 60: INT means use the integer

accumulator; REAL means use that floating-point thingy instead.

I About 1972, in Burstall’s Hope, and a bit later, in Milner’s ML,
the routes converged. Typeinferencebecame possible.

I Hoare and others began to proseltyse types as a means of
avoiding mistakes. Another Bloody Good Idea.

I Types won when they reached C, because they helped people to
program more safely with C pointers and procedure calls (though
C syntax did its best to stop them).

I Bertrand Meyer (Eifell) thinks that OOP is based on the idea of
types. Would that it were so! (The road to Hell is paved with
good intentions.)

10

An after-lunch fiasco

I In 1977,Hoare began a software engineering project.
I The idea was writesmallspecifications in classical logic oflarge

programs in a high-level language (not C),
I and then to prove that the program corresponded to its

specification.
I It was a fiasco. (Fiasco: sounds like fiesta. Fun, but still a fiasco.)

I The specifications were to be more precise than the English
which spawned them.

I They were more precise but also moreobscure, and very very
very veryveryhard to think up.

I Programs which used arrays were hard to deal with.
I Programs which involved loops were harder still.
I Pointers wereright out, and probably anathema.

11

An after-lunch fiasco

I In 1977, Hoare began a software engineering project.

I The ideawas writesmallspecifications in classical logic oflarge
programs in a high-level language (not C),

I and then to prove that the program corresponded to its
specification.

I It was a fiasco. (Fiasco: sounds like fiesta. Fun, but still a fiasco.)

I The specifications were to be more precise than the English
which spawned them.

I They were more precise but also moreobscure, and very very
very veryveryhard to think up.

I Programs which used arrays were hard to deal with.
I Programs which involved loops were harder still.
I Pointers wereright out, and probably anathema.

11

An after-lunch fiasco

I In 1977, Hoare began a software engineering project.
I The idea was writesmallspecifications in classical logic oflarge

programs in a high-level language (not C),

I and thento prove that the program corresponded to its
specification.

I It was a fiasco. (Fiasco: sounds like fiesta. Fun, but still a fiasco.)

I The specifications were to be more precise than the English
which spawned them.

I They were more precise but also moreobscure, and very very
very veryveryhard to think up.

I Programs which used arrays were hard to deal with.
I Programs which involved loops were harder still.
I Pointers wereright out, and probably anathema.

11

An after-lunch fiasco

I In 1977, Hoare began a software engineering project.
I The idea was writesmallspecifications in classical logic oflarge

programs in a high-level language (not C),
I and then to prove that the program corresponded to its

specification.

I It was a fiasco. (Fiasco: sounds like fiesta. Fun, but still a fiasco.)

I The specifications were to be more precise than the English
which spawned them.

I They were more precise but also moreobscure, and very very
very veryveryhard to think up.

I Programs which used arrays were hard to deal with.
I Programs which involved loops were harder still.
I Pointers wereright out, and probably anathema.

11

An after-lunch fiasco

I In 1977, Hoare began a software engineering project.
I The idea was writesmallspecifications in classical logic oflarge

programs in a high-level language (not C),
I and then to prove that the program corresponded to its

specification.
I It was a fiasco. (Fiasco: sounds like fiesta. Fun, but still a fiasco.)

I The specificationswere to be more precise than the English
which spawned them.

I They were more precise but also moreobscure, and very very
very veryveryhard to think up.

I Programs which used arrays were hard to deal with.
I Programs which involved loops were harder still.
I Pointers wereright out, and probably anathema.

11

An after-lunch fiasco

I In 1977, Hoare began a software engineering project.
I The idea was writesmallspecifications in classical logic oflarge

programs in a high-level language (not C),
I and then to prove that the program corresponded to its

specification.
I It was a fiasco. (Fiasco: sounds like fiesta. Fun, but still a fiasco.)

I The specifications were to be more precise than the English
which spawned them.

I Theywere more precise but also moreobscure, and very very
very veryveryhard to think up.

I Programs which used arrays were hard to deal with.
I Programs which involved loops were harder still.
I Pointers wereright out, and probably anathema.

11

An after-lunch fiasco

I In 1977, Hoare began a software engineering project.
I The idea was writesmallspecifications in classical logic oflarge

programs in a high-level language (not C),
I and then to prove that the program corresponded to its

specification.
I It was a fiasco. (Fiasco: sounds like fiesta. Fun, but still a fiasco.)

I The specifications were to be more precise than the English
which spawned them.

I They were more precise but also moreobscure, and very very
very veryveryhard to think up.

I Programs whichused arrays were hard to deal with.
I Programs which involved loops were harder still.
I Pointers wereright out, and probably anathema.

11

An after-lunch fiasco

I In 1977, Hoare began a software engineering project.
I The idea was writesmallspecifications in classical logic oflarge

programs in a high-level language (not C),
I and then to prove that the program corresponded to its

specification.
I It was a fiasco. (Fiasco: sounds like fiesta. Fun, but still a fiasco.)

I The specifications were to be more precise than the English
which spawned them.

I They were more precise but also moreobscure, and very very
very veryveryhard to think up.

I Programs which used arrays were hard to deal with.

I Programs whichinvolved loops were harder still.
I Pointers wereright out, and probably anathema.

11

An after-lunch fiasco

I In 1977, Hoare began a software engineering project.
I The idea was writesmallspecifications in classical logic oflarge

programs in a high-level language (not C),
I and then to prove that the program corresponded to its

specification.
I It was a fiasco. (Fiasco: sounds like fiesta. Fun, but still a fiasco.)

I The specifications were to be more precise than the English
which spawned them.

I They were more precise but also moreobscure, and very very
very veryveryhard to think up.

I Programs which used arrays were hard to deal with.
I Programs which involved loops were harder still.

I Pointers wereright out, and probably anathema.

11

An after-lunch fiasco

I In 1977, Hoare began a software engineering project.
I The idea was writesmallspecifications in classical logic oflarge

programs in a high-level language (not C),
I and then to prove that the program corresponded to its

specification.
I It was a fiasco. (Fiasco: sounds like fiesta. Fun, but still a fiasco.)

I The specifications were to be more precise than the English
which spawned them.

I They were more precise but also moreobscure, and very very
very veryveryhard to think up.

I Programs which used arrays were hard to deal with.
I Programs which involved loops were harder still.
I Pointers wereright out, and probably anathema.

11

Don’t go swimming straight after lunch

I Or, when in a hole, stop digging. They didn’t.

I Theyinvented refinement, which iseven harderthan verification.

I They invented Z (Abrial & Sufrin), in an attempt to allow bozos
to specify things they couldn’t prove.

I Abrial ran away from Z, and made a tool called B – which works
– but there are only two people in the world who can use it.

I One of them is Abrial, and he used it to make the safety software
for the Paris Ḿetro Ligne 14 (driverless: have a go!).

I So: not a complete bloody disaster, but really quite a train wreck,
and highly entertaining if you weren’t on the train. I was.

I That train wreck haunts us still: half of you are here to laugh at
my idiocy in still trying to ride the rails.

12

Don’t go swimming straight after lunch

I Or, when in a hole, stop digging. They didn’t.

I They invented refinement, which iseven harderthan verification.

I Theyinvented Z (Abrial & Sufrin), in an attempt to allow bozos
to specify things they couldn’t prove.

I Abrial ran away from Z, and made a tool called B – which works
– but there are only two people in the world who can use it.

I One of them is Abrial, and he used it to make the safety software
for the Paris Ḿetro Ligne 14 (driverless: have a go!).

I So: not a complete bloody disaster, but really quite a train wreck,
and highly entertaining if you weren’t on the train. I was.

I That train wreck haunts us still: half of you are here to laugh at
my idiocy in still trying to ride the rails.

12

Don’t go swimming straight after lunch

I Or, when in a hole, stop digging. They didn’t.

I They invented refinement, which iseven harderthan verification.

I They invented Z (Abrial & Sufrin), in an attempt to allow bozos
to specify things they couldn’t prove.

I Abrial ranaway from Z, and made a tool called B – which works
– but there are only two people in the world who can use it.

I One of them is Abrial, and he used it to make the safety software
for the Paris Ḿetro Ligne 14 (driverless: have a go!).

I So: not a complete bloody disaster, but really quite a train wreck,
and highly entertaining if you weren’t on the train. I was.

I That train wreck haunts us still: half of you are here to laugh at
my idiocy in still trying to ride the rails.

12

Don’t go swimming straight after lunch

I Or, when in a hole, stop digging. They didn’t.

I They invented refinement, which iseven harderthan verification.

I They invented Z (Abrial & Sufrin), in an attempt to allow bozos
to specify things they couldn’t prove.

I Abrial ran away from Z, and made a tool called B – which works
– but there are only two people in the world who can use it.

I One ofthem is Abrial, and he used it to make the safety software
for the Paris Ḿetro Ligne 14 (driverless: have a go!).

I So: not a complete bloody disaster, but really quite a train wreck,
and highly entertaining if you weren’t on the train. I was.

I That train wreck haunts us still: half of you are here to laugh at
my idiocy in still trying to ride the rails.

12

Don’t go swimming straight after lunch

I Or, when in a hole, stop digging. They didn’t.

I They invented refinement, which iseven harderthan verification.

I They invented Z (Abrial & Sufrin), in an attempt to allow bozos
to specify things they couldn’t prove.

I Abrial ran away from Z, and made a tool called B – which works
– but there are only two people in the world who can use it.

I One of them is Abrial, and he used it to make the safety software
for the Paris Ḿetro Ligne 14 (driverless: have a go!).

I So: nota complete bloody disaster, but really quite a train wreck,
and highly entertaining if you weren’t on the train. I was.

I That train wreck haunts us still: half of you are here to laugh at
my idiocy in still trying to ride the rails.

12

Don’t go swimming straight after lunch

I Or, when in a hole, stop digging. They didn’t.

I They invented refinement, which iseven harderthan verification.

I They invented Z (Abrial & Sufrin), in an attempt to allow bozos
to specify things they couldn’t prove.

I Abrial ran away from Z, and made a tool called B – which works
– but there are only two people in the world who can use it.

I One of them is Abrial, and he used it to make the safety software
for the Paris Ḿetro Ligne 14 (driverless: have a go!).

I So: not a complete bloody disaster, but really quite a train wreck,
and highly entertaining if you weren’t on the train. I was.

I That trainwreck haunts us still: half of you are here to laugh at
my idiocy in still trying to ride the rails.

12

Don’t go swimming straight after lunch

I Or, when in a hole, stop digging. They didn’t.

I They invented refinement, which iseven harderthan verification.

I They invented Z (Abrial & Sufrin), in an attempt to allow bozos
to specify things they couldn’t prove.

I Abrial ran away from Z, and made a tool called B – which works
– but there are only two people in the world who can use it.

I One of them is Abrial, and he used it to make the safety software
for the Paris Ḿetro Ligne 14 (driverless: have a go!).

I So: not a complete bloody disaster, but really quite a train wreck,
and highly entertaining if you weren’t on the train. I was.

I That train wreck haunts us still: half of you are here to laugh at
my idiocy in still trying to ride the rails.

12

This evening

I All thosesuns – high-level languages, structured programming,
types – have passed their zenith and sunk below the horizon. It is
now dark.

I The concurrency-sun never even dawned. The formal proof
hoo-hah was all hoo-hah.

I In mid-afternoon, OOP started a forest fire, and nobody could
see anything in the smoke.

I In late afternoon, Java started burning. The smoke of its
god-awful stupid bloody concurrency mechanisms was so thick
that most people thought the types-sun had already gone down,
and nobody saw it set.

I Here we are around our campfire, telling stories and wondering
if the smoke will have gone before the dawn. You’re all pretty
demoralised.

13

This evening

I All those suns – high-level languages, structured programming,
types – have passed their zenith and sunk below the horizon. It is
now dark.

I The concurrency-sun never even dawned. The formal proof
hoo-hah was all hoo-hah.

I In mid-afternoon, OOP started a forest fire, and nobody could
see anything in the smoke.

I In late afternoon, Java started burning. The smoke of its
god-awful stupid bloody concurrency mechanisms was so thick
that most people thought the types-sun had already gone down,
and nobody saw it set.

I Here we are around our campfire, telling stories and wondering
if the smoke will have gone before the dawn. You’re all pretty
demoralised.

13

This evening

I All those suns – high-level languages, structured programming,
types – have passed their zenith and sunk below the horizon. It is
now dark.

I The concurrency-sun never even dawned. The formal proof
hoo-hah was all hoo-hah.

I In mid-afternoon,OOP started a forest fire, and nobody could
see anything in the smoke.

I In late afternoon, Java started burning. The smoke of its
god-awful stupid bloody concurrency mechanisms was so thick
that most people thought the types-sun had already gone down,
and nobody saw it set.

I Here we are around our campfire, telling stories and wondering
if the smoke will have gone before the dawn. You’re all pretty
demoralised.

13

This evening

I All those suns – high-level languages, structured programming,
types – have passed their zenith and sunk below the horizon. It is
now dark.

I The concurrency-sun never even dawned. The formal proof
hoo-hah was all hoo-hah.

I In mid-afternoon, OOP started a forest fire, and nobody could
see anything in the smoke.

I In lateafternoon, Java started burning. The smoke of its
god-awful stupid bloody concurrency mechanisms was so thick
that most people thought the types-sun had already gone down,
and nobody saw it set.

I Here we are around our campfire, telling stories and wondering
if the smoke will have gone before the dawn. You’re all pretty
demoralised.

13

This evening

I All those suns – high-level languages, structured programming,
types – have passed their zenith and sunk below the horizon. It is
now dark.

I The concurrency-sun never even dawned. The formal proof
hoo-hah was all hoo-hah.

I In mid-afternoon, OOP started a forest fire, and nobody could
see anything in the smoke.

I In late afternoon, Java started burning. The smoke of its
god-awful stupid bloody concurrency mechanisms was so thick
that most people thought the types-sun had already gone down,
and nobody saw it set.

I Here weare around our campfire, telling stories and wondering
if the smoke will have gone before the dawn. You’re all pretty
demoralised.

13

This evening

I All those suns – high-level languages, structured programming,
types – have passed their zenith and sunk below the horizon. It is
now dark.

I The concurrency-sun never even dawned. The formal proof
hoo-hah was all hoo-hah.

I In mid-afternoon, OOP started a forest fire, and nobody could
see anything in the smoke.

I In late afternoon, Java started burning. The smoke of its
god-awful stupid bloody concurrency mechanisms was so thick
that most people thought the types-sun had already gone down,
and nobody saw it set.

I Here we are around our campfire, telling stories and wondering
if the smoke will have gone before the dawn. You’re all pretty
demoralised.

13

The morning

I I’m hereto tell you that the dawn of concurrency is at hand.

I At lastwe have a workable formal treatment of concurrency.
With its help, we’ll be able to see through the Java smoke to the
new land around us.

I This time, the hoo-hah is going to work for real.

14

The morning

I I’m here to tell you that the dawn of concurrency is at hand.

I At lastwehave a workable formal treatment of concurrency.
With its help, we’ll be able to see through the Java smoke to the
new land around us.

I This time, the hoo-hah is going to work for real.

14

The morning

I I’m here to tell you that the dawn of concurrency is at hand.

I At lastwe have a workable formal treatment of concurrency.
With its help, we’ll be able to see through the Java smoke to the
new land around us.

I This time,the hoo-hah is going to work for real.

14

The morning

I I’m here to tell you that the dawn of concurrency is at hand.

I At lastwe have a workable formal treatment of concurrency.
With its help, we’ll be able to see through the Java smoke to the
new land around us.

I This time, the hoo-hah is going to work for real.

14

How to implement a binary tree

... andan alternative left subtree.

15

How to implement a binary tree

p

... andan alternative left subtree.

15

How to implement a binary tree

p

left right

... andan alternative left subtree.

15

How to implement a binary tree

p

left right

L
R

... andan alternative left subtree.

15

How to implement a binary tree

p

left right

L
R

l

L'

... and an alternative left subtree.

15

How to replace L with L’?

p

left right

L
R

l

L'

What couldbe easier?

temp := p.left;
p.left := l;
disposetreetemp

(basic first-year undergrad stuff!)

16

How to replace L with L’?

p

left right

L
R

l

L'

What could be easier?

temp := p.left;
p.left := l;
disposetreetemp

(basic first-year undergrad stuff!)

16

How to replace L with L’?

p

left right

L
R

l

L'

What could be easier?

temp := p.left;
p.left := l;
disposetreetemp

(basic first-yearundergrad stuff!)

16

How to replace L with L’?

p

left right

L
R

l

L'

What could be easier?

temp := p.left;
p.left := l;
disposetreetemp

(basic first-year undergrad stuff!)

16

How to describe a tree (Reynolds)

Treescome apart, into threeseparatesections.

treeEmpty p =̂ p = nil ∧ emp
treeNode(λ, ρ) p =̂ ∃l, r · (p 7→ l, r ? treeλ l ? treeρ r)

(p 7→ l, r is a record,A ? B is heap separation)

17

How to describe a tree (Reynolds)

Trees come apart, into threeseparatesections.

treeEmpty p =̂ p = nil ∧ emp
treeNode(λ, ρ) p =̂ ∃l, r · (p 7→ l, r ? treeλ l ? treeρ r)

(p 7→ l, r is a record,A ? B is heap separation)

17

How to describe a tree (Reynolds)

Trees come apart, into threeseparatesections.

treeEmpty p =̂ p = nil ∧ emp
treeNode(λ, ρ) p =̂ ∃l, r · (p 7→ l, r ? treeλ l ? treeρ r)

(p 7→ l, r is a record,A ? B is heap separation)

17

Separation logic

I E 7→ F is asingle-celled heap with addressE and contentF.

I E 7→ F0, F1 is a two-celled heap;E 7→ F0, F1, F2 is three cells;
and so on for four-, five-, ... celled heaps.

I E andF must be ‘pure’ expressions that don’t mention the heap
(don’t use7→).

I A ? B is separation of heaps;A∧ B, A∨ B,¬A, A → B,∀x · P(x),
∃x · P(x) are as normal.A∧ B expresses coincidence of heaps;
you don’t need to know aboutA−? B.

I E 7→ F0, F1 is just shorthand forE 7→ F0 ? E + 1 7→ F1.

18

Separation logic

I E 7→ F is a single-celled heap with addressE and contentF.

I E 7→ F0, F1 is atwo-celled heap;E 7→ F0, F1, F2 is three cells;
and so on for four-, five-, ... celled heaps.

I E andF must be ‘pure’ expressions that don’t mention the heap
(don’t use7→).

I A ? B is separation of heaps;A∧ B, A∨ B,¬A, A → B,∀x · P(x),
∃x · P(x) are as normal.A∧ B expresses coincidence of heaps;
you don’t need to know aboutA−? B.

I E 7→ F0, F1 is just shorthand forE 7→ F0 ? E + 1 7→ F1.

18

Separation logic

I E 7→ F is a single-celled heap with addressE and contentF.

I E 7→ F0, F1 is a two-celled heap;E 7→ F0, F1, F2 is three cells;
and so on for four-, five-, ... celled heaps.

I E andF must be‘pure’ expressions that don’t mention the heap
(don’t use7→).

I A ? B is separation of heaps;A∧ B, A∨ B,¬A, A → B,∀x · P(x),
∃x · P(x) are as normal.A∧ B expresses coincidence of heaps;
you don’t need to know aboutA−? B.

I E 7→ F0, F1 is just shorthand forE 7→ F0 ? E + 1 7→ F1.

18

Separation logic

I E 7→ F is a single-celled heap with addressE and contentF.

I E 7→ F0, F1 is a two-celled heap;E 7→ F0, F1, F2 is three cells;
and so on for four-, five-, ... celled heaps.

I E andF must be ‘pure’ expressions that don’t mention the heap
(don’t use7→).

I A ? B is separationof heaps;A∧ B, A∨ B,¬A, A → B,∀x · P(x),
∃x · P(x) are as normal.A∧ B expresses coincidence of heaps;
you don’t need to know aboutA−? B.

I E 7→ F0, F1 is just shorthand forE 7→ F0 ? E + 1 7→ F1.

18

Separation logic

I E 7→ F is a single-celled heap with addressE and contentF.

I E 7→ F0, F1 is a two-celled heap;E 7→ F0, F1, F2 is three cells;
and so on for four-, five-, ... celled heaps.

I E andF must be ‘pure’ expressions that don’t mention the heap
(don’t use7→).

I A ? B is separation of heaps;A∧ B, A∨ B,¬A, A → B,∀x · P(x),
∃x · P(x) are as normal.A∧ B expresses coincidence of heaps;
you don’t need to know aboutA−? B.

I E 7→ F0, F1 is justshorthand forE 7→ F0 ? E + 1 7→ F1.

18

Separation logic

I E 7→ F is a single-celled heap with addressE and contentF.

I E 7→ F0, F1 is a two-celled heap;E 7→ F0, F1, F2 is three cells;
and so on for four-, five-, ... celled heaps.

I E andF must be ‘pure’ expressions that don’t mention the heap
(don’t use7→).

I A ? B is separation of heaps;A∧ B, A∨ B,¬A, A → B,∀x · P(x),
∃x · P(x) are as normal.A∧ B expresses coincidence of heaps;
you don’t need to know aboutA−? B.

I E 7→ F0, F1 is just shorthand forE 7→ F0 ? E + 1 7→ F1.

18

A modified Hoare logic

I {Q}C{R} is aresourcedandpartial correctnessassertion.C
will not go wrong (exceed its allocated resources) if started with
resourceQ, and will, if it terminates, deliver resourceR.

I The ‘small axioms’ of assignment are

{emp} x := new(){x 7→ }
{E 7→ } disposeE{emp}
{R[E/x]} x := E{R} (the Hoareaxiom)
{E 7→ F} x := [E] {x = F ∧ E 7→ F} (x not free inE, F)
{E 7→ } [E] := F {E 7→ F}

19

A modified Hoare logic

I {Q}C{R} is aresourcedandpartial correctnessassertion.C
will not go wrong (exceed its allocated resources) if started with
resourceQ, and will, if it terminates, deliver resourceR.

I The ‘smallaxioms’ of assignment are

{emp} x := new(){x 7→ }
{E 7→ } disposeE{emp}
{R[E/x]} x := E{R} (the Hoareaxiom)
{E 7→ F} x := [E] {x = F ∧ E 7→ F} (x not free inE, F)
{E 7→ } [E] := F {E 7→ F}

19

A modified Hoare logic

I {Q}C{R} is aresourcedandpartial correctnessassertion.C
will not go wrong (exceed its allocated resources) if started with
resourceQ, and will, if it terminates, deliver resourceR.

I The ‘small axioms’ of assignment are

{emp} x := new(){x 7→ }
{E 7→ } disposeE{emp}
{R[E/x]} x := E{R} (the Hoare axiom)
{E 7→ F} x := [E] {x = F ∧ E 7→ F} (x not free inE, F)
{E 7→ } [E] := F {E 7→ F}

19

Three inference rules

I Theframerule:
{Q}C{R}

{P ? Q}C{P ? R}
(modifies C

⋂
free P = {})

gap

I Theconcurrencyrule (hashorrid side-condition):

gap

{Q1}C1 {R1} {Q2}C2 {R2} . . . {Qn}Cn {Rn}
{Q1 ? Q2 ? · · · ? Qn}C1 || C2 || · · · || Cn {R1 ? R2 ? · · · ? Rn}

gap

I TheCCRrule (hasatrociousside condition):

gap

{(Q ? Ib) ∧ G}C{R? Ib}
{Q}with b when G do C od {R}

20

Three inference rules

I Theframerule:
{Q}C{R}

{P ? Q}C{P ? R}
(modifies C

⋂
free P = {})

gap

I Theconcurrencyrule (hashorrid side-condition):

gap

{Q1}C1 {R1} {Q2}C2 {R2} . . . {Qn}Cn {Rn}
{Q1 ? Q2 ? · · · ? Qn}C1 || C2 || · · · || Cn {R1 ? R2 ? · · · ? Rn}

gap

I TheCCRrule (hasatrociousside condition):

gap

{(Q ? Ib) ∧ G}C{R? Ib}
{Q}with b when G do C od {R}

20

Three inference rules

I Theframerule:
{Q}C{R}

{P ? Q}C{P ? R}
(modifies C

⋂
free P = {})

gap

I Theconcurrencyrule (has horrid side-condition):

gap

{Q1}C1 {R1} {Q2}C2 {R2} . . . {Qn}Cn {Rn}
{Q1 ? Q2 ? · · · ? Qn}C1 || C2 || · · · || Cn {R1 ? R2 ? · · · ? Rn}

gap

I TheCCRrule (hasatrociousside condition):

gap

{(Q ? Ib) ∧ G}C{R? Ib}
{Q}with b when G do C od {R}

20

Three inference rules

I Theframerule:
{Q}C{R}

{P ? Q}C{P ? R}
(modifies C

⋂
free P = {})

gap

I Theconcurrencyrule (has horrid side-condition):

gap

{Q1}C1 {R1} {Q2}C2 {R2} . . . {Qn}Cn {Rn}
{Q1 ? Q2 ? · · · ? Qn}C1 || C2 || · · · || Cn {R1 ? R2 ? · · · ? Rn}

gap

I TheCCRrule (hasatrociousside condition):

gap

{(Q ? Ib) ∧ G}C{R? Ib}
{Q}with b when G do C od {R}

20

Recent simplifications (not explained here)

I Permissions (fractionsof 7→, counts of�) to allow sharing of
heap;

I Variable permissions, to allow variables to be resource;

I Trivial side conditions;

I No side conditions at all (very new, this!).

21

Recent simplifications (not explained here)

I Permissions (fractions of7→, counts of�) to allow sharing of
heap;

I Variablepermissions, to allow variables to be resource;

I Trivial side conditions;

I No side conditions at all (very new, this!).

21

Recent simplifications (not explained here)

I Permissions (fractions of7→, counts of�) to allow sharing of
heap;

I Variable permissions, to allow variables to be resource;

I Trivial side conditions;

I No side conditions at all (very new, this!).

21

Recent simplifications (not explained here)

I Permissions (fractions of7→, counts of�) to allow sharing of
heap;

I Variable permissions, to allow variables to be resource;

I Trivial side conditions;

I No sideconditions at all (very new, this!).

21

Recent simplifications (not explained here)

I Permissions (fractions of7→, counts of�) to allow sharing of
heap;

I Variable permissions, to allow variables to be resource;

I Trivial side conditions;

I No side conditions at all (very new, this!).

21

Data structures: a bit array and a wide data array

slot: 0 1

data:
wide

22

Nine lines are now ten,
with addedauxiliary proof-variables

write: with bundle when true do pair := not(reading);wuse := pair od;
index := not(slot[pair]);
data[pair , index] := item;
with bundle when true do slot [pair] := index ;wuse := −1 od;
with bundle when true do latest := pair od

read: with bundle when true do pair := latest od;
with bundle when true do reading := pair od;
with bundle when true do index := slot [pair]; ruse := index od;
read := data[pair , index];
with bundle when true do ruse := −1 od

23

What the writer owns

(A point of notation: I’ve used a special form of7→ to describe a heap,
just to make the slides easy to read.

For example,data[pair , index] 7→ replaces
data + 2 ? pair + index 7→ .

There is no change in meaning.)

latest0.5, slot0.5, data0.33,wuse0.5, pair , index

�

(
slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5
?

if wuse ≥ 0 then data[pair , index] 7→ else emp fi

)

24

What the writer owns

(A point of notation: I’ve used a special form of7→ to describe a heap,
just to make the slides easy to read.

For example,data[pair , index] 7→ replaces
data + 2 ? pair + index 7→ .

There is no change in meaning.)

latest0.5, slot0.5, data0.33,wuse0.5, pair , index

�

(
slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5
?

if wuse ≥ 0 then data[pair , index] 7→ else emp fi

)

24

What the reader owns

reading0.5, ruse0.5, data0.33, pair , index
� if ruse ≥ 0 then data[pair , index] 7→ else emp fi

25

The bundle owns the rest

latest0.5, reading0.5, slot0.5, data0.33,wuse0.5, ruse0.5

� ∃s ·



slot [0] 7−−−→
0.5

s(0)? slot [1] 7−−−→
0.5

s(1)?
if wuse ≥ 0∧ ruse ≥ 0 then

data[reading , not(ruse)] 7→ ? data[wuse, s(wuse)] 7→
elsf wuse ≥ 0 then

data[wuse, s(wuse)] 7→ ?
data[not(wuse), s(not(wuse))] 7→ ? data[not(wuse), not(s(not(wuse)))] 7→

elsf ruse ≥ 0 then
data[reading , not(ruse)] 7→ ?
data[not(reading), s(not(reading))] 7→ ? data[not(reading), not(s(not(reading))] 7→)

else
data 7→ , , ,

fi



26

The writer

{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index � wuse = −1∧ slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5

}
with bundle when true do pair := not(reading);wuse := pair od;


latest0.5, slot0.5, data0.33,wuse0.5, pair , index

� wuse = pair ∧ ∃i ·
(

slot [pair] 7−−−→
0.5

i ? slot [not(pair)] 7−−−→
0.5

?

data[pair , not(i)] 7→

) 

index := not(slot [pair]);


latest0.5, slot0.5, data0.33,wuse0.5, pair , index

� wuse = pair ∧
(

slot [pair] 7−−−→
0.5

not(index) ? slot [not(pair)] 7−−−→
0.5

?

data[pair , index] 7→

) 

data[pair , index] := item;


latest0.5, slot0.5, data0.33,wuse0.5, pair , index

� wuse = pair ∧
(

slot [pair] 7−−−→
0.5

not(index) ? slot [not(pair)] 7−−−→
0.5

?

data[pair , index] 7→ item

) 

with bundle when true do slot [pair] := index ;wuse := −1 od;

{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index � wuse = −1∧ slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5

}

with bundle when true do latest := pair od{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index � wuse = −1∧ slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5

}

27

The writer

{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index � wuse = −1∧ slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5

}
with bundle when true do pair := not(reading);wuse := pair od;
latest0.5, slot0.5, data0.33,wuse0.5, pair , index

� wuse = pair ∧ ∃i ·
(

slot [pair] 7−−−→
0.5

i ? slot [not(pair)] 7−−−→
0.5

?

data[pair , not(i)] 7→

) 
index := not(slot [pair]);


latest0.5, slot0.5, data0.33,wuse0.5, pair , index

� wuse = pair ∧
(

slot [pair] 7−−−→
0.5

not(index) ? slot [not(pair)] 7−−−→
0.5

?

data[pair , index] 7→

) 

data[pair , index] := item;


latest0.5, slot0.5, data0.33,wuse0.5, pair , index

� wuse = pair ∧
(

slot [pair] 7−−−→
0.5

not(index) ? slot [not(pair)] 7−−−→
0.5

?

data[pair , index] 7→ item

) 

with bundle when true do slot [pair] := index ;wuse := −1 od;

{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index � wuse = −1∧ slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5

}

with bundle when true do latest := pair od{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index � wuse = −1∧ slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5

}

27

The writer

{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index � wuse = −1∧ slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5

}
with bundle when true do pair := not(reading);wuse := pair od;
latest0.5, slot0.5, data0.33,wuse0.5, pair , index

� wuse = pair ∧ ∃i ·
(

slot [pair] 7−−−→
0.5

i ? slot [not(pair)] 7−−−→
0.5

?

data[pair , not(i)] 7→

) 
index := not(slot [pair]);
latest0.5, slot0.5, data0.33,wuse0.5, pair , index

� wuse = pair ∧
(

slot [pair] 7−−−→
0.5

not(index) ? slot [not(pair)] 7−−−→
0.5

?

data[pair , index] 7→

) 
data[pair , index] := item;


latest0.5, slot0.5, data0.33,wuse0.5, pair , index

� wuse = pair ∧
(

slot [pair] 7−−−→
0.5

not(index) ? slot [not(pair)] 7−−−→
0.5

?

data[pair , index] 7→ item

) 

with bundle when true do slot [pair] := index ;wuse := −1 od;

{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index � wuse = −1∧ slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5

}

with bundle when true do latest := pair od{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index � wuse = −1∧ slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5

}

27

The writer

{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index � wuse = −1∧ slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5

}
with bundle when true do pair := not(reading);wuse := pair od;
latest0.5, slot0.5, data0.33,wuse0.5, pair , index

� wuse = pair ∧ ∃i ·
(

slot [pair] 7−−−→
0.5

i ? slot [not(pair)] 7−−−→
0.5

?

data[pair , not(i)] 7→

) 
index := not(slot [pair]);
latest0.5, slot0.5, data0.33,wuse0.5, pair , index

� wuse = pair ∧
(

slot [pair] 7−−−→
0.5

not(index) ? slot [not(pair)] 7−−−→
0.5

?

data[pair , index] 7→

) 
data[pair , index] := item;
latest0.5, slot0.5, data0.33,wuse0.5, pair , index

� wuse = pair ∧
(

slot [pair] 7−−−→
0.5

not(index) ? slot [not(pair)] 7−−−→
0.5

?

data[pair , index] 7→ item

) 
with bundle when true do slot [pair] := index ;wuse := −1 od;

{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index � wuse = −1∧ slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5

}

with bundle when true do latest := pair od{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index � wuse = −1∧ slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5

}

27

The writer

{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index � wuse = −1∧ slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5

}
with bundle when true do pair := not(reading);wuse := pair od;
latest0.5, slot0.5, data0.33,wuse0.5, pair , index

� wuse = pair ∧ ∃i ·
(

slot [pair] 7−−−→
0.5

i ? slot [not(pair)] 7−−−→
0.5

?

data[pair , not(i)] 7→

) 
index := not(slot [pair]);
latest0.5, slot0.5, data0.33,wuse0.5, pair , index

� wuse = pair ∧
(

slot [pair] 7−−−→
0.5

not(index) ? slot [not(pair)] 7−−−→
0.5

?

data[pair , index] 7→

) 
data[pair , index] := item;
latest0.5, slot0.5, data0.33,wuse0.5, pair , index

� wuse = pair ∧
(

slot [pair] 7−−−→
0.5

not(index) ? slot [not(pair)] 7−−−→
0.5

?

data[pair , index] 7→ item

) 
with bundle when true do slot [pair] := index ;wuse := −1 od;{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index � wuse = −1∧ slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5

}
with bundle when true do latest := pair od{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index � wuse = −1∧ slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5

}

27

Details of the first writer step

{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index � wuse = −1∧ slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5

}
with bundle when true do



latest , reading0.5, slot , data0.66,wuse,pair , index

� ∃s ·


wuse = −1∧ slot 7→ s(0),s(1)?
data[not(reading), s(not(reading))] 7→ ? data[not(reading), not(s(not(reading)))] 7→ ?
if ruse ≥ 0 then data[reading , not(ruse)] 7→

else data[reading , s(reading)] 7→ ? data[reading , not(s(reading))] 7→
fi





pair := not(reading);



latest , reading0.5, slot , data0.66,wuse,pair , index

� ∃s ·


wuse = −1∧ pair = not(reading) ∧ slot 7→ s(0),s(1)?
data[not(reading), s(not(reading))] 7→ ? data[not(reading), not(s(not(reading)))] 7→ ?
if ruse ≥ 0 then data[reading , not(ruse)] 7→

else data[reading , s(reading)] 7→ ? data[reading , not(s(reading))] 7→
fi





wuse := pair



latest , reading0.5, slot , data0.66,wuse,pair , index

� ∃s ·


wuse = pair ∧ pair = not(reading) ∧ slot 7→ s(0),s(1)?
data[not(reading), s(not(reading))] 7→ ? data[not(reading), not(s(not(reading)))] 7→ ?
if ruse ≥ 0 then data[reading , not(ruse)] 7→

else data[reading , s(reading)] 7→ ? data[reading , not(s(reading))] 7→
fi





od;{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index

� wuse = pair ∧ ∃i ·
(

slot [pair] 7−−−→
0.5

i ? slot [not(pair)] 7−−−→
0.5

? data[pair , not(i)] 7→
) }

28

Details of the first writer step

{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index � wuse = −1∧ slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5

}
with bundle when true do

latest , reading0.5, slot , data0.66,wuse,pair , index

� ∃s ·


wuse = −1∧ slot 7→ s(0),s(1)?
data[not(reading), s(not(reading))] 7→ ? data[not(reading), not(s(not(reading)))] 7→ ?
if ruse ≥ 0 then data[reading , not(ruse)] 7→

else data[reading , s(reading)] 7→ ? data[reading , not(s(reading))] 7→
fi




pair := not(reading);



latest , reading0.5, slot , data0.66,wuse,pair , index

� ∃s ·


wuse = −1∧ pair = not(reading) ∧ slot 7→ s(0),s(1)?
data[not(reading), s(not(reading))] 7→ ? data[not(reading), not(s(not(reading)))] 7→ ?
if ruse ≥ 0 then data[reading , not(ruse)] 7→

else data[reading , s(reading)] 7→ ? data[reading , not(s(reading))] 7→
fi





wuse := pair



latest , reading0.5, slot , data0.66,wuse,pair , index

� ∃s ·


wuse = pair ∧ pair = not(reading) ∧ slot 7→ s(0),s(1)?
data[not(reading), s(not(reading))] 7→ ? data[not(reading), not(s(not(reading)))] 7→ ?
if ruse ≥ 0 then data[reading , not(ruse)] 7→

else data[reading , s(reading)] 7→ ? data[reading , not(s(reading))] 7→
fi





od;{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index

� wuse = pair ∧ ∃i ·
(

slot [pair] 7−−−→
0.5

i ? slot [not(pair)] 7−−−→
0.5

? data[pair , not(i)] 7→
) }

28

Details of the first writer step

{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index � wuse = −1∧ slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5

}
with bundle when true do

latest , reading0.5, slot , data0.66,wuse,pair , index

� ∃s ·


wuse = −1∧ slot 7→ s(0),s(1)?
data[not(reading), s(not(reading))] 7→ ? data[not(reading), not(s(not(reading)))] 7→ ?
if ruse ≥ 0 then data[reading , not(ruse)] 7→

else data[reading , s(reading)] 7→ ? data[reading , not(s(reading))] 7→
fi




pair := not(reading);

latest , reading0.5, slot , data0.66,wuse,pair , index

� ∃s ·


wuse = −1∧ pair = not(reading) ∧ slot 7→ s(0),s(1)?
data[not(reading), s(not(reading))] 7→ ? data[not(reading), not(s(not(reading)))] 7→ ?
if ruse ≥ 0 then data[reading , not(ruse)] 7→

else data[reading , s(reading)] 7→ ? data[reading , not(s(reading))] 7→
fi




wuse := pair



latest , reading0.5, slot , data0.66,wuse,pair , index

� ∃s ·


wuse = pair ∧ pair = not(reading) ∧ slot 7→ s(0),s(1)?
data[not(reading), s(not(reading))] 7→ ? data[not(reading), not(s(not(reading)))] 7→ ?
if ruse ≥ 0 then data[reading , not(ruse)] 7→

else data[reading , s(reading)] 7→ ? data[reading , not(s(reading))] 7→
fi





od;{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index

� wuse = pair ∧ ∃i ·
(

slot [pair] 7−−−→
0.5

i ? slot [not(pair)] 7−−−→
0.5

? data[pair , not(i)] 7→
) }

28

Details of the first writer step

{
latest0.5, slot0.5, data0.33,wuse0.5, pair , index � wuse = −1∧ slot [0] 7−−−→

0.5
? slot [1] 7−−−→

0.5

}
with bundle when true do

latest , reading0.5, slot , data0.66,wuse,pair , index

� ∃s ·


wuse = −1∧ slot 7→ s(0),s(1)?
data[not(reading), s(not(reading))] 7→ ? data[not(reading), not(s(not(reading)))] 7→ ?
if ruse ≥ 0 then data[reading , not(ruse)] 7→

else data[reading , s(reading)] 7→ ? data[reading , not(s(reading))] 7→
fi




pair := not(reading);

latest , reading0.5, slot , data0.66,wuse,pair , index

� ∃s ·


wuse = −1∧ pair = not(reading) ∧ slot 7→ s(0),s(1)?
data[not(reading), s(not(reading))] 7→ ? data[not(reading), not(s(not(reading)))] 7→ ?
if ruse ≥ 0 then data[reading , not(ruse)] 7→

else data[reading , s(reading)] 7→ ? data[reading , not(s(reading))] 7→
fi




wuse := pair

latest , reading0.5, slot , data0.66,wuse,pair , index

� ∃s ·


wuse = pair ∧ pair = not(reading) ∧ slot 7→ s(0),s(1)?
data[not(reading), s(not(reading))] 7→ ? data[not(reading), not(s(not(reading)))] 7→ ?
if ruse ≥ 0 then data[reading , not(ruse)] 7→

else data[reading , s(reading)] 7→ ? data[reading , not(s(reading))] 7→
fi




od;{

latest0.5, slot0.5, data0.33,wuse0.5, pair , index
� wuse = pair ∧ ∃i ·

(
slot [pair] 7−−−→

0.5
i ? slot [not(pair)] 7−−−→

0.5
? data[pair , not(i)] 7→

) }

28

The reader is even easier than the writer!

{
reading0.5, ruse0.5, data0.33, pair , index � ruse = −1

}
with bundle when true do pair := latest od;

{
reading0.5, ruse0.5, data0.33, pair , index � ruse = −1

}

with bundle when true do reading := pair od;

{
reading0.5, ruse0.5, data0.33, pair , index � ruse = −1∧ reading = pair

}

with bundle when true do index := slot [pair]; ruse := index od;

{
reading0.5, ruse0.5, data0.33, pair , index � ruse ≥ 0∧ reading = pair ∧ data[pair , index] 7→

}

read := data[pair , index];

{
reading0.5, ruse0.5, data0.33, pair , index

� ruse ≥ 0∧ reading = pair ∧ ∃i · data[pair , index] 7→ i ∧ read = i

}

with bundle when true do ruse := −1 od{
reading0.5, ruse0.5, data0.33, pair , index � ruse = −1

}

29

The reader is even easier than the writer!

{
reading0.5, ruse0.5, data0.33, pair , index � ruse = −1

}
with bundle when true do pair := latest od;{
reading0.5, ruse0.5, data0.33, pair , index � ruse = −1

}
with bundle when true do reading := pair od;

{
reading0.5, ruse0.5, data0.33, pair , index � ruse = −1∧ reading = pair

}

with bundle when true do index := slot [pair]; ruse := index od;

{
reading0.5, ruse0.5, data0.33, pair , index � ruse ≥ 0∧ reading = pair ∧ data[pair , index] 7→

}

read := data[pair , index];

{
reading0.5, ruse0.5, data0.33, pair , index

� ruse ≥ 0∧ reading = pair ∧ ∃i · data[pair , index] 7→ i ∧ read = i

}

with bundle when true do ruse := −1 od{
reading0.5, ruse0.5, data0.33, pair , index � ruse = −1

}

29

The reader is even easier than the writer!

{
reading0.5, ruse0.5, data0.33, pair , index � ruse = −1

}
with bundle when true do pair := latest od;{
reading0.5, ruse0.5, data0.33, pair , index � ruse = −1

}
with bundle when true do reading := pair od;{
reading0.5, ruse0.5, data0.33, pair , index � ruse = −1∧ reading = pair

}
with bundle when true do index := slot [pair]; ruse := index od;

{
reading0.5, ruse0.5, data0.33, pair , index � ruse ≥ 0∧ reading = pair ∧ data[pair , index] 7→

}

read := data[pair , index];

{
reading0.5, ruse0.5, data0.33, pair , index

� ruse ≥ 0∧ reading = pair ∧ ∃i · data[pair , index] 7→ i ∧ read = i

}

with bundle when true do ruse := −1 od{
reading0.5, ruse0.5, data0.33, pair , index � ruse = −1

}

29

The reader is even easier than the writer!

{
reading0.5, ruse0.5, data0.33, pair , index � ruse = −1

}
with bundle when true do pair := latest od;{
reading0.5, ruse0.5, data0.33, pair , index � ruse = −1

}
with bundle when true do reading := pair od;{
reading0.5, ruse0.5, data0.33, pair , index � ruse = −1∧ reading = pair

}
with bundle when true do index := slot [pair]; ruse := index od;{
reading0.5, ruse0.5, data0.33, pair , index � ruse ≥ 0∧ reading = pair ∧ data[pair , index] 7→

}
read := data[pair , index];

{
reading0.5, ruse0.5, data0.33, pair , index

� ruse ≥ 0∧ reading = pair ∧ ∃i · data[pair , index] 7→ i ∧ read = i

}

with bundle when true do ruse := −1 od{
reading0.5, ruse0.5, data0.33, pair , index � ruse = −1

}

29

The reader is even easier than the writer!

{
reading0.5, ruse0.5, data0.33, pair , index � ruse = −1

}
with bundle when true do pair := latest od;{
reading0.5, ruse0.5, data0.33, pair , index � ruse = −1

}
with bundle when true do reading := pair od;{
reading0.5, ruse0.5, data0.33, pair , index � ruse = −1∧ reading = pair

}
with bundle when true do index := slot [pair]; ruse := index od;{
reading0.5, ruse0.5, data0.33, pair , index � ruse ≥ 0∧ reading = pair ∧ data[pair , index] 7→

}
read := data[pair , index];{
reading0.5, ruse0.5, data0.33, pair , index

� ruse ≥ 0∧ reading = pair ∧ ∃i · data[pair , index] 7→ i ∧ read = i

}
with bundle when true do ruse := −1 od{
reading0.5, ruse0.5, data0.33, pair , index � ruse = −1

}

29

The rest of the reader is too easy to bother with

with bundle when true do index := slot [pair]; ruse := index
(in the reader) is very veryverysimilar to

with bundle when true do pair := not(reading);wuse := pair od
(which I just showed you in detail from the writer),

so you don’t need to see it.

And therest of the reader is trivial.

30

The rest of the reader is too easy to bother with

with bundle when true do index := slot [pair]; ruse := index
(in the reader) is very veryverysimilar to

with bundle when true do pair := not(reading);wuse := pair od
(which I just showed you in detail from the writer),

so you don’t need to see it.

And the rest of the reader is trivial.

30

Nice ProofsTM

I Are proofswhich you can read, understand and believe.

I Proofs which don’t fit on one slide are unbelievable.

I Previous proofs of Simpson’s 4-slot are Henderson
(rely-guarantee, about 20 pages), Burton (refinement of
atomicity, about 25 pages) and Burton’s thesis (somehow, about
99 pages).

I I ain’t reading no 99-page proof.

I My proofs fit on a slide with a bit of scaleboxing. You can read
them. Given a day or so, you can understand them.

I For thevery first timewe have nice proofs of a nine-line
algorithm.

I I hope it has been worth the wait.

31

Nice ProofsTM

I Are proofs which you can read, understand and believe.

I Proofs whichdon’t fit on one slide are unbelievable.

I Previous proofs of Simpson’s 4-slot are Henderson
(rely-guarantee, about 20 pages), Burton (refinement of
atomicity, about 25 pages) and Burton’s thesis (somehow, about
99 pages).

I I ain’t reading no 99-page proof.

I My proofs fit on a slide with a bit of scaleboxing. You can read
them. Given a day or so, you can understand them.

I For thevery first timewe have nice proofs of a nine-line
algorithm.

I I hope it has been worth the wait.

31

Nice ProofsTM

I Are proofs which you can read, understand and believe.

I Proofs which don’t fit on one slide are unbelievable.

I Previousproofs of Simpson’s 4-slot are Henderson
(rely-guarantee, about 20 pages), Burton (refinement of
atomicity, about 25 pages) and Burton’s thesis (somehow, about
99 pages).

I I ain’t reading no 99-page proof.

I My proofs fit on a slide with a bit of scaleboxing. You can read
them. Given a day or so, you can understand them.

I For thevery first timewe have nice proofs of a nine-line
algorithm.

I I hope it has been worth the wait.

31

Nice ProofsTM

I Are proofs which you can read, understand and believe.

I Proofs which don’t fit on one slide are unbelievable.

I Previous proofs of Simpson’s 4-slot are Henderson
(rely-guarantee, about 20 pages), Burton (refinement of
atomicity, about 25 pages) and Burton’s thesis (somehow, about
99 pages).

I I ain’t reading no 99-page proof.

I My proofs fit on a slide with a bit of scaleboxing. You can read
them. Given a day or so, you can understand them.

I For thevery first timewe have nice proofs of a nine-line
algorithm.

I I hope it has been worth the wait.

31

Nice ProofsTM

I Are proofs which you can read, understand and believe.

I Proofs which don’t fit on one slide are unbelievable.

I Previous proofs of Simpson’s 4-slot are Henderson
(rely-guarantee, about 20 pages), Burton (refinement of
atomicity, about 25 pages) and Burton’s thesis (somehow, about
99 pages).

I I ain’t reading no 99-page proof.

I My proofsfit on a slide with a bit of scaleboxing. You can read
them. Given a day or so, you can understand them.

I For thevery first timewe have nice proofs of a nine-line
algorithm.

I I hope it has been worth the wait.

31

Nice ProofsTM

I Are proofs which you can read, understand and believe.

I Proofs which don’t fit on one slide are unbelievable.

I Previous proofs of Simpson’s 4-slot are Henderson
(rely-guarantee, about 20 pages), Burton (refinement of
atomicity, about 25 pages) and Burton’s thesis (somehow, about
99 pages).

I I ain’t reading no 99-page proof.

I My proofs fit on a slide with a bit of scaleboxing. You can read
them. Given a day or so, you can understand them.

I For thevery first timewe have nice proofs of a nine-line
algorithm.

I I hope it has been worth the wait.

31

Nice ProofsTM

I Are proofs which you can read, understand and believe.

I Proofs which don’t fit on one slide are unbelievable.

I Previous proofs of Simpson’s 4-slot are Henderson
(rely-guarantee, about 20 pages), Burton (refinement of
atomicity, about 25 pages) and Burton’s thesis (somehow, about
99 pages).

I I ain’t reading no 99-page proof.

I My proofs fit on a slide with a bit of scaleboxing. You can read
them. Given a day or so, you can understand them.

I For thevery first timewe have nice proofs of a nine-line
algorithm.

I I hopeit has been worth the wait.

31

Nice ProofsTM

I Are proofs which you can read, understand and believe.

I Proofs which don’t fit on one slide are unbelievable.

I Previous proofs of Simpson’s 4-slot are Henderson
(rely-guarantee, about 20 pages), Burton (refinement of
atomicity, about 25 pages) and Burton’s thesis (somehow, about
99 pages).

I I ain’t reading no 99-page proof.

I My proofs fit on a slide with a bit of scaleboxing. You can read
them. Given a day or so, you can understand them.

I For thevery first timewe have nice proofs of a nine-line
algorithm.

I I hope it has been worth the wait.

31

Summary

I O’Hearn andReynolds invented separation logic to deal with
lists and trees.

I I made it deal with graphs, by brute force and ignorance.

I O’Hearn showed me how to pass pointers in messages.

I By brute force, I made them all take notice of permissions.

I Similarly, I made them take notice that variables are resource
too.

I I did some proofs of some hoary old concurrency favourites.

I Matthew Parkinson, then Matthew Parkinson and I, did proofs of
some old concurrency puzzlers.

32

Summary

I O’Hearn and Reynolds invented separation logic to deal with
lists and trees.

I I madeit deal with graphs, by brute force and ignorance.

I O’Hearn showed me how to pass pointers in messages.

I By brute force, I made them all take notice of permissions.

I Similarly, I made them take notice that variables are resource
too.

I I did some proofs of some hoary old concurrency favourites.

I Matthew Parkinson, then Matthew Parkinson and I, did proofs of
some old concurrency puzzlers.

32

Summary

I O’Hearn and Reynolds invented separation logic to deal with
lists and trees.

I I made it deal with graphs, by brute force and ignorance.

I O’Hearn showed me how to pass pointers in messages.

I By brute force, I made them all take notice of permissions.

I Similarly, I made them take notice that variables are resource
too.

I I did some proofs of some hoary old concurrency favourites.

I Matthew Parkinson, then Matthew Parkinson and I, did proofs of
some old concurrency puzzlers.

32

Summary

I O’Hearn and Reynolds invented separation logic to deal with
lists and trees.

I I made it deal with graphs, by brute force and ignorance.

I O’Hearn showed me how to pass pointers in messages.

I By bruteforce, I made them all take notice of permissions.

I Similarly, I made them take notice that variables are resource
too.

I I did some proofs of some hoary old concurrency favourites.

I Matthew Parkinson, then Matthew Parkinson and I, did proofs of
some old concurrency puzzlers.

32

Summary

I O’Hearn and Reynolds invented separation logic to deal with
lists and trees.

I I made it deal with graphs, by brute force and ignorance.

I O’Hearn showed me how to pass pointers in messages.

I By brute force, I made them all take notice of permissions.

I Similarly, I made them take notice that variables are resource
too.

I I did some proofs of some hoary old concurrency favourites.

I Matthew Parkinson, then Matthew Parkinson and I, did proofs of
some old concurrency puzzlers.

32

Summary

I O’Hearn and Reynolds invented separation logic to deal with
lists and trees.

I I made it deal with graphs, by brute force and ignorance.

I O’Hearn showed me how to pass pointers in messages.

I By brute force, I made them all take notice of permissions.

I Similarly, I made them take notice that variables are resource
too.

I I did some proofs of some hoary old concurrency favourites.

I Matthew Parkinson, then Matthew Parkinson and I, did proofs of
some old concurrency puzzlers.

32

Summary

I O’Hearn and Reynolds invented separation logic to deal with
lists and trees.

I I made it deal with graphs, by brute force and ignorance.

I O’Hearn showed me how to pass pointers in messages.

I By brute force, I made them all take notice of permissions.

I Similarly, I made them take notice that variables are resource
too.

I I did some proofs of some hoary old concurrency favourites.

I MatthewParkinson, then Matthew Parkinson and I, did proofs of
some old concurrency puzzlers.

32

Summary

I O’Hearn and Reynolds invented separation logic to deal with
lists and trees.

I I made it deal with graphs, by brute force and ignorance.

I O’Hearn showed me how to pass pointers in messages.

I By brute force, I made them all take notice of permissions.

I Similarly, I made them take notice that variables are resource
too.

I I did some proofs of some hoary old concurrency favourites.

I Matthew Parkinson, then Matthew Parkinson and I, did proofs of
some old concurrency puzzlers.

32

