
 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 1

Brian Shearing

Advanced Programming Specialist Group
British Computer Society, 14th April 2005

School of Computer Science & Information Systems

Birkbeck College, University of London, 3rd February 2005

Towards Malleable Software

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 2

Towards Malleable Software
 1940s Machine Codes

Tom Kilburn

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 3

Towards Malleable Software
 1940s Machine Codes
 1950s Assembly Languages
 1960s High-level Languages (Fortran, COBOL)
 1970s Structured Programming (Pascal, C)
 1980s Modular Programming (ADA, Modula-2)

Tom Kilburn

 1990s Object-oriented Programming (C++, Java)

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 4

Towards Malleable Software
Today’s software is not malleable Hand wringing

What programming should be like Finger wagging

Whence came the inflexibility, and
where might malleability be found?

Chin stroking

A model for malleable software Arm waving

Research: verify or falsify the model Head scratching

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 5

Towards Malleable Software

Part I

Today’s software is not malleable.
–  What does this mean?
–  Why does it matter?

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 6

Towards Malleable Software
Some transformations

Fat client to
thin one
Fat client to or
from thin one

Some transformations that require
much programming

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 7

Towards Malleable Software

Fat client to or
from thin one

Two-tier to
three-tier

Single thread to
multiplex

Cache sharing
multiplex

Some transformations that require
much programming

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 8

Towards Malleable Software

Part II

What programming should be like
–  with malleable software
–  and tools adapted for malleability

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 9

Compile Package Product.Cache in its own
address space

Towards Malleable Software
Instructions to a compiler of a
malleable notation:

Compile Policies.OvernightBatch as a remote server
using CORBA for communication
Compile Process Customer.Trolley as a middleware
component with multiple instances and automatic
load-balancing
Compile Components Xml.Lexer and Xml.Parser into
one address space but as separate processes connected
through a buffer with a capacity of 10,000 characters

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 10

Show the dataflows that
result from me doing this

Show me the system's
structure

Towards Malleable Software
A compiler that knows
enough to obey the previous
instructions also knows
enough to obey these:

When I do that, where is
the time spent?

in words, or
in pictures

Without me having to buy
separate tools from
specialist vendors

Without me having to buy
separate tools from
specialist vendors

without having to buy
separate tools from
specialist vendors

It’s easy to do
these things for

malleable
software

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 11

Build a book that explains
how the system is put
together

Build a reference manual
for the system

Towards Malleable Software
A compiler that knows
enough to obey the previous
instructions also knows
enough to obey these:

Compile and run the
system’s tests

JavaDoc,
Eiffel and Dee
show the way

‘Literate Programming’
and 3R show the way

JUnit shows the way,
but test scripts must be

in the source

About
time too!

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 12

Towards Malleable Software

Part III

Whence came the inflexibility?
–  What is it about our way of working
 that impedes malleability?
–  Where might malleability be found?
 A look at existing approaches that
 contribute to malleability

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 13

Towards Malleable Software
What about

o-o?

Object-oriented programming makes
it possible to build systems that are
readily adaptable and expandable —
within a given structure.

It provides little help for altering
structures themselves.

ü

û
What we need is

 refactoring in-the-large.

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 14

Towards Malleable Software

classes

static member
inner classes

member
inner
classes

local inner classes

but no block structure
and no nested methods

private scope

package
scope

protected
scope

public
scope

delegates

interfaces

It’s a mess,
and it doesn’t

work

1 2 3 4 5 6 7 8 9 10 11 12 13 14

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 15

Towards Malleable Software

object

clients
(several)

services
(several)

logging

meta
queries

documentation
control

(start, stop,
suspend, resume,

swapout)

state
queries

timing and usage
statistics

Every aspect’s
interface must
be public, even
though each
aspect should
have its own
access path.

Modular it isn’t! And for restructuring it’s hopeless.

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 16

Towards Malleable Software

Principle of managed modularity
An access permission is not a property of a
component but of a relationship between

components

also known as
The who’s-asking principle

or as
The principle of not calling out-the-back

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 17

Towards Malleable Software

Hints on programming language design
in Computer Systems Reliability

State of the Art Report
Vol 20, pp 503–34

Pergamon/Infotech 1974

‘The language designer should
be familiar with many
alternative features designed
by others […]
One thing he should not do is
to include untried ideas of his
own. His task is consolidation,
not innovation.’

C. A. R. Hoare

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 18

Towards Malleable Software
capabilities

Maurice Wilkes

Cambridge CAP computer

Roger Needham

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 19

Towards Malleable Software

HelloWorld:
 using (Standard) process(init: StandardIn)
declare
 Parms: StandardInterface;
begin
 receive Parms from Init;
 call Parms.PutLine(“Hello, World!”);
 return Parms;
end process

Hermes

PutLine is a variable

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 20

Towards Malleable Software
object style process object

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 21

process style

Towards Malleable Software

compilation: •  as is •  monolithic •  distributed
•  buffered:

object style process object

buffer

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 22

Towards Malleable Software
process Producer (channel c) is
 loop
 p; c ! α;
 q; c ! β;
 r;
 end loop
end Producer

class Producer is
 integer state := 0;
 integer read() is
 loopcase state
 | 0: p; state := 1; return α
 | 1: q; state := 2; return β
 | 2: r; state := 0
 end loopcase
 end read
end Producer

process Consumer
(channel c) is
 ...
 c ? v;
 ...
end Consumer

process Consumer
(Producer c) is
 ...
 v := c.read();
 ...
end Consumer

process style

object style

 // 0
 // 1
 // 2

inversion

Michael
A. Jackson

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 23

Towards Malleable Software

Principle of process
generality

Process-oriented
programming

is more general than
object-oriented
programming

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 24

Towards Malleable Software

Per Brinch Hansen
‘It is astounding to me that Java's
insecure parallelism is taken
seriously by the programming
community, a quarter of a century
after the invention of monitors and
Concurrent Pascal.

Letter to the editor
ACM Sigplan Notices

April 1999

It has no merit.
[...]
Java ignores the last twenty-
five years of research in
parallel languages.’

shared variables,
weak monitor semantics

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 25

Towards Malleable Software

 Joyce
(almost)

type Stream is [int(integer), eos];

process sort(Stream i, o) is

end sort;

 integer x;
 case
 | i ? eos:
 | i ? int(x):
 end case

message
protocol

 o ! eos
 subsort(x, i, o)

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 26

procedure subsort(integer x, Stream i, o) is

 integer y;
 loopcase
 | i ? eos:

 | i ? int(y):

 end loopcase
end subsort;

Towards Malleable Software

recursive
process

invocation

type Stream is [int(integer), eos];

process sort(Stream i, o) is

end sort;

 integer x;
 case
 | i ? eos:
 | i ? int(x):
 end case

message
protocol

 o ! eos
 subsort(x, i, o)

 Stream s := new Stream; sort(s, o);

 o ! int(x); s ! eos; exit loopcase

 if x > y then s ! int(x); x := y else s ! int(y) end if

 Joyce
(almost)

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 27

Towards Malleable Software

Principle of
fractal

construction

The same
notation should

be employed
at all levels of

scale

Compositional approach
solves only half the
problem; it composes but
it does not deconstruct

Who can determine the
point of discontinuity?

Remember the
dotted lines

Today’s large system is
tomorrow’s small

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 28

Towards Malleable Software
 Scene: A design session
 Dramatis personae:
 Simon, a service object
 Chloe, a client of Simon

 Chloe: Please tell me the value of property p.
 Simon: No.
 Chloe: (Taken aback)
 But I really need to know the value of p.
 Simon: Why?
 Chloe: Because I need to splonge it.
 Simon: Just ask me, and I’ll splonge it for you.

Principle of
property-less

objects
Properties
are not part
of the object

model

object-oriented
programming!

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 29

Deciding if passing by reference is possible, safe,
and advantageous is best left to software.

Towards Malleable Software
Principle of

parameterised
isolation

Arguments should
be passed only

by value and not
by reference

Passing data by reference has
been an unfortunate historical
cul-de-sac,
caused by eagerness to
optimise too early

Passing data only by value
can be done without loss of
efficiency

Hermes
occam-pi Erlang

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 30

Towards Malleable Software

Part IV

A model for malleable software
–  putting it all together

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 31

Towards Malleable Software
cell (encapsulation only, not

relationships and not identity)

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 32

Towards Malleable Software

port = capability

cell (encapsulation only, not
relationships and not identity)

data, methods
and processes

all private

one program counter
per cell; processes within

a cell are coroutines

only ports
can be

imported

c.f.
JSR 121
‘Isolates’

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 33

Towards Malleable Software

Part V

Research to verify or falsify the model.
–  Develop and prove the flexibility,
 simplicity and efficiency of the model

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 34

 process-oriented library, inc. GUI
 simple compiler and interpreter for notation

Towards Malleable Software

 model => abstract syntax => concrete syntax

 complete first draft of model

 configurability
 IDE, with visualisation tools

 demonstrate mapping of business models

 code generator

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 35

 process-oriented library, inc. GUI
 simple compiler and interpreter for notation

Towards Malleable Software

 model => abstract syntax => concrete syntax

 complete first draft of model

 configurability
 code generator IDE, with visualisation tools

 compiler (in malleable notation) compiles at 1,000 ipc

 build complete system as is, monolithic, distributed ...
 make random cuts; put extracts on remote machines

 essential for performance
 e.g. communication: Java 10,000i, Hermes 9i

 demonstrate mapping of business models

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 36

 2000s ???

Towards Malleable Software

 1940s Machine Codes
 1950s Assembly Languages
 1960s High-level Languages
 1970s Structured Programming
 1980s Modular Programming
 1990s Object-oriented Programming

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 37

 2000s ???

Towards Malleable Software

 1940s Machine Codes
 1950s Assembly Languages
 1960s High-level Languages
 1970s Structured Programming
 1980s Modular Programming
 1990s Object-oriented Programming
 2000s Process-oriented Programming

 © Brian Shearing & Peter Grogono Towards Malleable Software, April 2005 38

 2010s ???
 2000s ???

Towards Malleable Software

 1940s Machine Codes
 1950s Assembly Languages
 1960s High-level Languages
 1970s Structured Programming
 1980s Modular Programming
 1990s Object-oriented Programming
 2000s Process-oriented Programming
 2010s Malleability 2010s Malleability: Modular Concurrency

