
Redesign of UML Class Diagrams: 

a formal Approach

Piotr Kosiuczenko

Department of Computer Science

University of Leicester

Talk overview

• Problems with oo-approach

• Design by contract

• Interpretation Functions

• Examples

• Application to State Charts

• Requirements tracing

Software engineering

• OO-hype: code mirrors directly the real world

• Change is a constant factor in software development process: 

specification, design and implementation are not only being extended but can be

changed

• A variety of design patterns is applied to generalize, improve decoupling, or opti-

mize performance 

• Continuous path from problem domain to code

class C {
int i = 0;
C c = new C();
public int m() {

}

...

Req

spec

Software engineering (UML)

Structure:

Class diagram

Interaction, Behaviour:

Object diagram

Sequence diagram

Collaboration

Statechart

Requirements, Functionality:

Use Case Diagram

Activity Diagram

Implementation:

Component Diagram

Deployment Diagram

Object Constraint Language 
(OCL)

Design by Contract (R. Floyd/T. Hoare/B. Meyer)

• The Design by Contract approach allows us for system specification without getting

into implementation details

• It separates what a class should do from how it should be done

• Contracts are formal specifications/agreements between the method caller and the

method implementer

• A pre-condition specifies what should be true for the caller to make a request from

the callee 

• A post-condition specifies what should be true when the callee finishes completing

the request 

• An invariant specifies what should “always” be true

Object Constraints Language (OCL)

• OCL is a semiformal language for contractual specification of object-oriented sys-

tems

• It allows us to specify invariants as well as operation´s pre- and post-conditions



Example: role pattern

context Person inv personConstraint:
not(self.oclIsTypeOf(Person))

and
self.oclIsKindOf(Dean) implies 

self.oclIsKindOf(Professor)

name : String

Person
<<abstract>>

Dean

Assistant

salary : Real

getSalary() : RealgetNumber() : Real

Student

number : Integer

Professor

salary : Real

getSalary() : Real

Example cont.

Role

name : String
Person

name : String

Student
number : Integer

Staff
salary : Integer

DeanAssistant

lnkRole

getSalary() : Real

Professor

*

Formal background (Hennicker et al.)

• Boolean, String, Integer, Real are modelled by the sorts

Boolean, String, Integer, Real

• The object attributes are determined by <e, o>

<_, _> : Env  C  Env_C

• Every OCL operation is modelled by a corresponding function

_oclIsKindOf(_) : Env_Id  ClN   Boolean

• The attributes, associations and operations of a class C are modelled by correspond-

ing functions on Env_C

Formal background (Hennicker at al.)

Trans : OCL -----> T(S, X)

Trans(self) =df self

Trans(u.a) =df <env, Trans(u)>.a

self.a1. … .an-1.an -----> an(env, an-1(env,...a1(env, self)...))

context C 
inv : 

env: Env, self : C, x1 : T1, …, xn : Tn  Trans( )

Basic notions

A, B T( , X): 

• A generates B iff A is contained in B and every non-variable term of B can be ob-

tained from terms belonging to A by variable renaming and term composition

• The set A is a base of B iff in addition every term from B can be obtained in a unique

way by composing terms from A and renaming of variables

Basic notions

Let  : T(S, F, , , X)  T(S´, F´, ´, ´, X) be a partial function such that var( (t))

var(t).

 is compositional iff for all terms t the following conditions hold:

• (x) = x, for x  X

• if maps ti on ti´, for i= 0,..., n, and t has the form t0[t1/x1,..., tn/xn], then  is defined

on t and (t) = t0´[t1´/x1,..., tn´/xn]

•  preserves predefined logical operators such as: , , .



Extendability theorem

Theorem

Let A, B  T(S, F, , , X) be sets of terms, B is closed on term composition and let

T(S´, F´, ´, ´, X). Let  : S  S´ be a partial function. If the following con-

ditions are satisfied:

• var( (t))  var(t), if (t) is defined 

• A is a base of B

• ( (x)) ´ ´(x), for every variable x  X

• ´( (t)) ´ ( (t)), for every term t  A

• (t1)) (t2) implies that ( (t1)) ´ ( (t2)), for all terms t1, t2  A

Then  can be extended to B. Moreover  uniquely determined and compositional. 

Orthogonal terms

A set of terms is orthogonal, if all terms in A are linear (no replications of variables) and

A does not contain two terms u and v, such that:

• u is unifiable with a proper subterm of v or 

• u is different from v, but u is unifiable with v. 

Statement

If A is orthogonal, then A forms a basis of Gen(A).

Interpretation Functions

We call a compositional function interpretation function, if and only if  is generated

by a mapping with orthogonal domain.

Theorem

Let  be an interpretation function, and let E be an arbitrary set of first order formulas

such that  is defined on them. If the formula  can be proved from E using 

• equational reasoning (Birkhoff calculus), 

• propositional tautologies, 

• resolution rule and modus ponens, 

• proof by induction, if the if the constructors in the range are images of constructors

from the domain of 

then and ( ) logically follows from (E).

Interpretation Functions

• The notion of interpretation function corresponds to the notion of refinement, but

can deal with not incremental changes

• It corresponds also to the notion of abstraction in UML:

a kind of dependency which relates two model elements that represent the same con-

cept at different levels of abstraction or from different viewpoints

Transformation of OCL constraints

(x) =df Trans-1( (Trans(x))

context C inv : context (C) inv : ( )

OclSpec

FormalSpec

mapping

Trans

ModelElements

OclSpec´

FormalSpec´

ModelElements´

Trans

Examples

• Navigation path redesign

• Role pattern application

• State pattern application

• Refactoring



Navigation path redesign

<<trace>>

A I B
b : Integer

A *lnkI lnkB
lnkB B

b : Integer

<<trace>>

Navigation path redesign

• A   ~> A

• B   ~> B

• lnkI.lnkB    ~> lnkB

• b   ~> b

<<trace>>

A I B
b : Integer

A *lnkI lnkB
lnkB B

b : Integer

<<trace>>

Navigation path redesign

• A   ~> A

• B   ~> B

• lnkI.lnkB    ~> lnkB

• b   ~> b

• <env, <env, self : A>.lnkI>.lnkB : B ~>  <env, self : A>.lnkB : B

• <env, self : B>.b : Integer         ~>  <env, self : B>.b : Integer 

<<trace>>

A I B
b : Integer

A *lnkI lnkB
lnkB B

b : Integer

<<trace>>

Role pattern

context Person inv personConstraint:
not(self.oclIsTypeOf(Person))

and
(self.oclIsKindOf(Dean) implies 

self.oclIsKindOf(Professor))

Student

number : Integer

name : String

ProfessorAssistant

Person

salary : Realsalary : Real

getSalary() : Real

<<abstract>>

getSalary() : Real

Dean

Example cont.

Role

name : String
Person

name : String

Student
number : Integer

Staff
salary : Integer

DeanAssistant

lnkRole

getSalary() : Real

Professor

*

Example cont.

self.oclIsTypeOf(Person) |------> self.lnkRole->isEmpty

self.oclIsKindOf(Professor) |------>

self.lnkRole->exists(r | r.oclIsKindOf(Professor))

self.oclIsKindOf(Dean) |------>

self.lnkRole->exists(r | r.oclIsKindOf(Dean))

Role

name : String
Person

name : String

Student
number : Integer

Staff
salary : Integer

DeanAssistant

lnkRole

getSalary() : Real

Professor

*



Example cont.

context Person inv personConstraint:
not(self.lnkRole->isEmpty)

and
(self.lnkRole->exists(r | r.oclIsKindOf(Dean)) implies 

self.lnkRole->exists(r | r.oclIsKindOf(Professor)))

Role

name : String
Person

name : String

Student
number : Integer

Staff
salary : Integer

DeanAssistant

lnkRole

getSalary() : Real

Professor

*

State Pattern

FlipFlop

next()

state : enum{flip, flop}

flip

flop

next() next()

top

State Pattern

context FlipFlop :: next()post enumConstraint:
state@pre = #flip implies state = #flop and
state@pre = #flop implies state = #flip

FlipFlop

next()

state : enum{flip, flop}

flip

flop

next() next()

top

Transforming pre- and post- conditions

Transpost(t.a) = <env´, Transpost(t)>.a

Transpost(t.a@pre) = <env, Transpost(t)>.a

self : C, env, env´ : Env, x1 : 1,…  xn : Tn 

[, result : T result = <env, self>.op(x1,…  xn).T ]

env´ = <env, self>.op(x1,…  xn).Env Trans( ) Transpost( ´)

State pattern cont.

State

Flip

FlipFlop

next()

lnkState

Flop

State pattern cont.

flip ~> Flip
flop ~> Flop
state ~> lnkState.oclType

State

Flip

FlipFlop

next()

lnkState

Flop



State pattern cont.

flip ~> Flip
flop ~> Flop
state ~> lnkState.oclType

context FlipFlop :: next() post:
lnkState@pre.oclType = Flip implies lnkState.oclType = Flop 

and
lnkState@pre.oclType = Flop implies lnkState.oclType = Flip 

State

Flip

FlipFlop

next()

lnkState

Flop

Refactoring Patterns (Fowler et. al.)

Refactoring is a technique for disciplined code redesign to make code clearer and cleaner.

Refectoring

• applies refactoring patterns

• preserves functionality

• works in small steps

• after each step runnable (tested) code

Refactoring Patterns: Inline Class

context Person inv: 
self.getTelNumber() = self.telNumber.number^context

context C inv:
self.telNumber.number >= 100000

Person

name

getTelNumber()

TelNumber

areaCode
number

Person

areaCode
number

name

getTelNumber()

Refactoring Patterns: Inline Class

context Person inv: 
self.getTelNumber() = self.telNumber.number

context C inv:
self.telNumber.number >= 100000

Person

name

getTelNumber()

TelNumber

areaCode
number

Person

areaCode
number

name

C

getTelNumber()

Refactoring Patterns: Inline Class

Person

name

getTelNumber()

TelNumber

areaCode
number

Person

areaCode
number

name

C C

getTelNumber()

Refactoring Patterns: Inline Class

Person

name

getTelNumber()

TelNumber

areaCode
number

Person

areaCode
number

name

C C
C

getTelNumber()

Person

areaCode
number

name

getTelNumber()



Refactoring Patterns: Inline Class

context Person inv: 
self.getTelNumber() = self.number

context C inv:
self.person.number >= 100000

Person

name

getTelNumber()

TelNumber

areaCode
number

Person

areaCode
number

name

C C

getTelNumber()

State Machines

• What happens to state machines when a transformation pattern is applied to the cor-

responding class diagrams?

• More precisely, what happens to states and their structural relations in a state ma-

chine?

flip

flop

next() next()

top

State Machines

• State machines describes behavior of objects (model elements in general).

• A state in a state machine corresponds to a condition during the life of an object or

an interaction during which it satisfies some condition, performs some action, or

waits for some event.

• States can be specified by formulas, so called state invariants (e.g. OCL formulas).

flip

flop

next() next()

top

SM Structure versus State Invariants

The topological relations between states can be interpreted by logical relations: 

Let s1 and s2 be states and let I1 and I2 be the corresponding state invariants, respectively:

• Monotonicity: If s1 is a substate of s2, then I1 implies I2 (i.e. I1  I2 holds).

• Non-overlappingness: If s1 and s2 are two different direct substates of an or-state,

then I1 excludes I2 (i.e. (I1  I2) holds).

Let s be an or-state, let s1,..., sn be all its substates and let F, F1,..., Fn be the corresponding

formulas.

• Exhaustiveness: F1 ... Fn  F 

SM Structure versus State Invariants

top --- self.state = flip or self.state = flop
flip --- self.state = flip
flop --- self.state = flop

Monotonicity:

self.state = flip self.state = flip or self.state = flop

self.state = flop self.state = flip or self.state = flop

Non-overlappingness:

(self.state = flip  self.state = flop)

flip

flop

next() next()

FlipFlop

next()

state : enum{flip, flop}

top

Deriving logical invariants from UML metamodel

In general, the monotonicity condition can be expressed in OCL in respect to the UML

metamodel as follows: 

Let smst be the set of all states of a State Machine M (smst can be defined in OCL in

a generic way). Then 

smst.forAll(s.subvertex.forAll(v|
v.constraint implies s.constraint))

The logical equivalent has the form:

{v.constraint  s.constraint | s  smst  v  s.subvertex}



SM Structure as Logical Relation

In general, we consider propositional formulas of the form C(y1,..., yn).

Let A be a set of formulas. We say that states s1, ..., sn satisfy the formula C(y1,..., yn) in

respect to specification A and entailment relation |- if and only if 

A |- C(s1,..., sn)

Let map states s1, ..., sn to states s1´, ..., sn´. We say that  preserves propositional for-

mula C in respect to A and to the entailment relation |- if and only if 

A |- C(s1,..., sn) implies that A |- C(s1´,..., sn´)

Structural Invariants

Statement

Let C(y1,..., yn) be a propositional formula and let  be an interpretation function. Then,

the following holds:

(C(y1,..., yn)) = C( (y1),..., (yn)).

Corollary

Let A be a set of formulas. Let C be a propositional formula. Let  be defined on the for-

mulas from A and on states sj, for j = 1,..., n. Then preserves C in respect to A and |-epri.

Consequently, IFs preserve structure of state machines as long as the relation between

the corresponding invariants can be proved by above mentioned ways of reasoning.

Implementing States by Enumeration Types

top --- self.state = flip or self.state = flop
flip --- self.state = flip
flop --- self.state = flop

We formally prove the non-overlappingness condition by contradiction using equational

reasoning.

flip

flop

next() next()

FlipFlop

next()

state : enum{flip, flop}

top

Proof of non-overlappingness

self.state = #flop  self.state = #flip implies #flop = self.state  self.state = #flip

because of (a  b)  (c  a) c  b) and x = y  y = x

#flop = self.state  self.state = #flip implies #flop = #flip

because of x = y  y = z  x = z

¬(self.state = #flop  self.state = #flip)

because #flip is different from #flop, (p  q)  (q  r)  (p  q), (p  q)  ¬ q  ¬ p

Consequently, the states flip and flop are non-overlapping.

Example: State Pattern application

self.lnkState.oclType = Flop  self.lnkState.oclType = Flip implies 

Flop = self.lnkState.oclType  self.lnkState.oclType = Flip

because of (a  b)  (c  a) c  b) and x = y  y = x

Flop = self.lnkState.oclType  self.lnkState.oclType = Flip implies Flop = Flip

because of x = y  y = z  x = z

¬(self.lnkState.oclType = Flop  self.lnkState.oclType = Flip)

because Flip is different from Flop, (p  q)  (q  r)  (p  q), (p  q)  ¬ q  ¬ p.

Consequently in the second case, the states flip and flop are non-overlapping as well.

State

Flip

FlipFlop

next()

lnkState

Flop

Traceability

• You can’t manage what you can’t trace (R. Watkins, M. Neal)

• Tracing is usually practiced by software providers of high-reliability products and

systems

• Requirements traceability is expressly demanded 

by the US Department of Defense and 

in the US health-care industry 



Traceability

• Requirements traceability is the ability to describe and follow the life of a require-

ment, in both a forward and backward direction, throughout the system life cycle
(M.. Jarke)

• Traceability allows us for (Catalysis):

• providing a clear trace from requirements spec to implementation

• justifying design decisions more clearly

• clears the difference between requirements and their refinement

• is a good cross-check, helping to expose inconsistencies 

• makes unambiguous statement about how the abstract model has been represent-

ed/implemented

Traceability

• Traceability should come as a side effect rather then impose additional bureaucracy

• Problems:

Traceability is time consuming and error prone.

Not much software support is offered.

Trace: Formal definition

Let F0 be a set of compositional functions

F =df {(t, t´) |  f  F0
 f(t) = t´}

For a set of terms U

• the forward-trace of U equals F*(U)

• the backward-trace of the set U equals (F*) (U)

• the full-trace of U equals (F)*(U) F )*(U)

forward-tracebackward-trace

full-trace

Trace: Loan specification

LoanableDocu

loanSpec1

JunksBorrower
loan

* *

loanConstraint1:
loan->count() <= 10

Trace: Loan specification 

borrow

loanSpec2

LoanableDocu

loanSpec1

Junks

*

Borrower
loan

* *

LoanableDocu

loanConstraint1:
loan->count() <= 10

Borrower

r1

Trace: Loan specification

borrow

loanSpec2

LoanableDocu

loanSpec1

Junks

*

Borrower
loan

* *

LoanableDocu

loanConstraint1:
loan->count() <= 10

Borrower
loanConstraint2:
borrow->count() <= 10

r1



Trace: Loan specification

borrow

loanSpec2

LoanableDocu

loanSpec1

Junks

*

Borrower
loan

* *

loanSpecA

BorrowableDocu
*

has
NormalBorrower

LoanableDocu

loanConstraint1:
loan->count() <= 10

Borrower
loanConstraint2:
borrow->count() <= 10

loanConstraintA:
has->count() <= 5

r1

Trace: Loan specification

borrow

loanSpec2

LoanableDocu

loanSpec1

Junks

*

Borrower
loan

* *

Docu

loanSpec3

Loan
date : Realdoc

form1

1 *

loanSpecA

BorrowableDocu
*

has
NormalBorrower

Student ProfessorAssistantFormThesis BookJournal

LoanableDocu

loanConstraint1:
loan->count() <= 10

Borrower
loanConstraint2:
borrow->count() <= 10

loanConstraintA:
has->count() <= 5

Person

r1

r2 r2

rA, rB
rBrA

Trace: Loan specification

context loanSpec3::Person inv personConstraint :
self.loan.doc->count() <= 10

context loanSpec3::Student inv studentConstraint :
self.loan.doc->count() <= 5

context loanSpec3::Assistant inv assistantConstraint :

self.loan.doc->count() <= 5

Trace: Loan specification

Forward-trace of loanConstraint2:

personConstraint

Backward-trace of loanConstraint2:

loanConstraint1

Full-trace of loanConstraint2:

loanConstraint1, loanConstraint2, personConstraint

Forward-trace of loanConstraintA:

studentConstraint, assistantConstraint

Trace: Loan specification

Docu

loanSpec3

Loan
date : Realdoc

form1

1 *

loanSpecA

BorrowableDocu
*

has

Student ProfessorAssistantFormThesis BookJournal

Person

NormalBorrower

loanConstraintB:
has->oclIsKindOf(BorrowableDocu)

rT rT rT

Trace: Loan specification

context loanSpec3::Student inv studentConstraintBD :
self.loan.doc->oclIsKindOf(Book)

context loanSpec3::Assistant inv assistantConstraintBD :

self.loan.doc->oclIsKindOf(Book)

Docu

loanSpec3

Loan
date : Realdoc

form1

1 *

loanSpecA

BorrowableDocu
*

has

Student ProfessorAssistantFormThesis BookJournal

Person

NormalBorrower

loanConstraintB:
has->oclIsKindOf(BorrowableDocu)

rT rT rT



Concluding remarks 

Interpretation functions 

• allow us for transformation of constraints

• preserve basic kinds of proofs 

• preserve structure of state machines

• preserve LTL/CTL proofs

• can be implemented, but are syntax sensitive

Future work

• Tool support

• Proof of the conjecture that IFs preserve first order logicentailment relation (coun-

terexample, resp.)

• Relation to institutions

• Integration with software development methods such as Catalysis and RUP

• Definition of interpretation functions modulo equational theory


